Module 2

Industrial policy: a theoretical and practical framework to analyse and apply industrial policy
1 Introduction

Government intervention, and industrial policy more specifically, have been issues of contention as long as the economics profession has existed. Early political and development economists such as Paul Rosenstein-Rodan, Albert Hirschman, Alexander Gerschenkron, and Raúl Prebisch emphasized the importance of government intervention and the ability of a state to mold economic activity in ways that would be most beneficial to society. In the early 1980s, development policy shifted towards a more market-centered approach, limiting government intervention to policies that try to make market outcomes more efficient by increasing competition or providing public goods. This view even led some economists to argue that the best industrial policy is not to have an industrial policy. More recently, however, there has been increased public pressure to reduce unemployment and stimulate economic growth, and, in this context, a revived interest in industrial policy.

As we will see throughout this module, historical accounts suggest that the use of industrial policies has been beneficial to many countries, spurring structural transformation and development. Structural transformation, technological upgrading, and innovation do not always take place autonomously, but rather require careful and consistent state intervention and support. Recent developments in the world economy, including the fallout from the 2007-2008 global financial crisis, have put industrial policy back on the policy agenda of developed and developing countries alike. The issue most governments face today is not whether to have an industrial policy, but how to best design and implement an industrial policy.

In Module 1 of this teaching material, we learned that the process of development entails profound structural changes in an economy. This module discusses how the government can support such a process. In doing so, we survey the debate on the role of industrial policy in structural transformation and discuss how an industrial policy can be implemented. Section 2 provides an overview of how the literature has defined industrial policy and classified industrial policy instruments. It also discusses the key conditions and principles of successful industrial policy design and implementation. Section 3 reviews arguments in favour of and against industrial policy, starting with a brief summary of the historical debate around the East Asian and Latin American experiences. The aim is to answer the question of why governments should have an industrial policy in the first place. Section 4 moves to more practical matters, providing some examples of successful and less successful industrial policies. Section 5 discusses some of the current challenges to industrial policies in developing countries, distinguishing between internal and external factors influencing industrial policymaking. The overall objective of the module is to provide the reader with both a theoretical and practical framework to analyse and apply industrial policy.

At the end of this module, students should be able to:

- Explain what industrial policy is and how it can be best designed and implemented;
- Describe the policy instruments that can be used to implement industrial policies;
- Describe the different views on the role of industrial policies;
- Analyse country experiences with specific industrial policy instruments; and
- Understand the challenges to industrial policies in the context of a developing economy.

2 What is industrial policy?

Both the definition and the implementation of industrial policy have varied considerably throughout history and across different countries. Based on the views of the leading industrial policy scholars, this section explains what constitutes an industrial policy, what policy instruments it uses, and how it can be implemented.

2.1 Defining industrial policy

There is no consensual definition of industrial policy, which reflects the controversy surrounding this concept. Adopting a broad definition, Warwick (2013: 16) defines industrial policy as “any type of intervention or government policy that attempts to improve the business environment or to alter the structure of economic activity toward sectors, technologies or tasks that are expected to offer better prospects for economic growth or societal welfare than would occur in the absence of such intervention” [emphasis by the original author]. Other authors (Chang, 2009; Landesmann, 1992; Pack and Saggi, 2006) provide narrower definitions of industrial policy. For instance, Pack and Saggi (2006: 2) consider industrial policy to be “any type of selective intervention or government policy that attempts to alter the structure of production toward sectors that are expected to offer better prospects for economic growth than would occur in the absence of such intervention, i.e. in the market equilibrium” [emphasis added].
2.1.1 Functional or selective industrial policies?

As we will see throughout this module, the issue of how actively industrial policy should seek to alter the structure of economic activity is at the heart of the discussion on industrial policy. More precisely, the debate has focused on how selective industrial policies should be, i.e. to what extent industrial policy should target (select) specific sectors, technologies, or tasks in order to alter the structure of the economy towards them. Using Warwick’s (2013) words, policies that attempt to improve business environments have been commonly referred to as *functional*, or horizontal, industrial policies. Policies that alter the structure of economic activity towards specific sectors have been referred to as *selective*, or vertical, industrial policies. Functional policies would be the least interventionist because they are designed to support the operation of markets in general. Examples include policy measures that facilitate entry of firms through competition policy, or trade policies that liberalize imports. Selective industrial policies aim to promote certain industries and firms over others. They can make use of subsidies and other forms of support and protection such as import tariffs and restrictions, tax incentives, and public procurement.

Some authors (Lall and Teubal, 1998) have further divided functional/horizontal policies into two distinct categories. This approach has also been followed by UNCTAD and UNIDO (2011: 34), which describe industrial policy as involving “a combination of strategic or selective interventions aimed at propelling specific activities or sectors, functional interventions intended at improving the workings of markets, and horizontal interventions directed at promoting specific activities across sectors.” Following this literature, horizontal policies go slightly beyond functional policies, as they aim to promote cross-sector activities for which markets are missing or are difficult to create (a typical example is innovation policy). Hence, horizontal policy would lie somewhere between functional and selective industrial policies.

As several authors have argued, the distinction between functional and selective industrial policy might be less relevant than what the literature has suggested, as “even the most ‘general’ policy measures favour some sectors over others” (Salazar-Xirinachs et al., 2014: 20; see also Rodrik, 2008). For example, infrastructure investments, generally considered a functional industrial policy, favour a certain region and the industries that populate it. Similarly, training programmes aim to create knowledge and skills in specific technical areas. Moreover, prioritization – for example in choosing where to build a road – is always present in policymaking.

2.1.2 Which sectors deserve support from selective industrial policies?

Some authors have specified the characteristics that such sectors must have. They must have export, job, and knowledge creation potential (Reich, 1982), and they must be new to the economy (Rodrik, 2004). Ocampo et al. (2009) include dynamic effects by specifying that industrial policy should aim to restructure the economy and trade specialization towards activities with higher technological content and promote innovative activities with strong linkages to the rest of the economy. In their view, innovative activities should be understood in a broad sense as new technologies, but also new markets, industrial structures, or exploitation of previously underutilized natural resources. Finally, tension exists between promoting structural and technological change through productivity growth and achieving an acceptable quantity and quality of employment, as higher productivity in an industry reduces employment (see Module 1). Noting this, Salazar-Xirinachs et al. (2014: 2) call for a policy that can “strike a good balance in achieving the two fundamental objectives of productivity growth and more and better jobs.”

Given these characteristics, manufacturing is the most common target of industrial policies. Nevertheless, some authors, such as Rodrik (2004: 3), caution that “industrial policy is not about industry per se. Policies targeted at non-traditional agriculture or services qualify as much as incentives on manufactures.” Especially in economies heavily dependent on agriculture, industrial policies should simultaneously spur investments in productivity improvements and technological change in agriculture that lay the foundations for manufacturing and services expansion (Szirmai et al., 2013; UNCTAD, 2015a).

2.1.3 Should industrial policy conform to or defy comparative advantages?

Authors have disagreed on whether industrial policy should be comparative-advantage-conforming or defying (Lin, 2011; Lin and Chang, 2009). The argument in favour of comparative-advantage-conforming industrial policy is that governments in developing countries should first focus on the industries where they have a comparative advantage (i.e. resource- and labour-intensive industries). Only when they accumulate sufficient physical and human capital should they upgrade their industrial policy and target...
Higher-productivity industries. According to this view, comparative-advantage-defying industrial policies led developing countries to move into heavy (i.e. capital-intensive) industries: because capital was a scarce resource, production costs were much higher than in countries that had a comparative advantage in those industries. This led to what Lin and Treichel (2014: 66) called “a fatal mistake”, as production costs and costs incurred to protect these firms were much higher than the benefits of entering those industries. Following this view, therefore, the government should play a facilitating role, helping firms realize their latent comparative advantage.

The argument in defense of a comparative-advantage-defying strategy is that developing countries with an abundance of cheap labour have a comparative advantage – and can compete in global markets – only in labour-intensive industries. However, such industries cannot act as an engine of sustained economic growth or serve as an entry point to more advanced technological and skill-related activities. Moreover, comparative-advantage-complying industrial policies, such as those aimed at making markets free and competitive, would constrain countries to specialize according to their static comparative advantage that is in low-value-added, low-productivity sectors with few possibilities for learning and upgrading. Retraining workers from lower- to higher-productivity activities and adapting machinery is less straightforward than accounted for by those who defend comparative-advantage-conforming industrial policy. Using the example of his native Republic of Korea, Chang (1994) argues that industrial policy is about building comparative advantages and creating entirely new sectors and industries, rather than following static comparative advantages. Therefore, following this view, industrial policy should help countries discover and realize their dynamic comparative advantage.

The literature on industrial policy also frequently uses the notion of “picking winners”, albeit in different ways. Some have considered this a synonym for selective industrial policy (Noland and Pack, 2002; Pack and Saggi, 2006). Others have used it to refer to the more arbitrary use of selective industrial policies that, by being arbitrary, generated rent-seeking (Aghion et al., 2011). Others (Amsden, 2001; Cimoli et al., 2009; Wade, 1990) have argued that speaking about picking winners is often misleading because in many developing countries governments need to create rather than pick winners. This consideration led Wade (2010) to talk about leading the market and following the market policies. The former refers to policies through which governments invest where private firms would not invest, thereby creating potential new business opportunities and national champions, and the latter refers to policies that support investments that would have been undertaken anyway by private firms.

To sum up, Figure 25 presents a visual representation of the policy categories discussed in this section. As we said, industrial policies have been classified into functional, horizontal, and selective policies, depending on the degree of government intervention. Functional industrial policies are the most general, neutral, and least interventionist policies. Horizontal policies follow immediately thereafter. Selective industrial policies are considered the most active and distortive. As a consequence, functional and horizontal industrial policies are the most widely accepted, while selective industrial policies have generated considerable disagreement. This has led some authors to further distinguish within the broad category of selective industrial policies and to talk about picking winners versus creating winners; comparative-advantage-conforming versus comparative-advantage-defying policies; and leading the market versus following market policies. Each of these categories implies a different degree of government intervention.
2.2 Industrial policy instruments

There are three dimensions of industrial policy that are sometimes confused in the literature: (a) overall vision or strategic direction; (b) industrial policy instruments; and (c) the process of industrial policy making (Weiss, 2013). This section focuses on industrial policy instruments, which are the tools that governments have at their disposal to implement industrial policies. In the literature, industrial policy instruments have been classified in various ways, i.e. with different attributes. Some authors have used the categories described in Section 2.1, distinguishing between functional, horizontal, and selective industrial policies; others have distinguished according to policy domains. For example, Di Maio (2009: 107) distinguishes between innovation and technology policies, education and skill formation policies, trade policies, targeted industrial support measures, sectoral competitiveness policies, and competition-regulation policies. Warwick (2013) differentiates between policy instruments that affect the product market, the labour market, the capital market, and technology, and systems/institutions.

Partly following Warwick (2013), a recent classification proposed by Weiss (2015) identifies five categories of industrial policy instruments: those related to the product market, labour market, capital market, and technology. Instruments are further categorized into market-based instruments, defined as instruments operating through pricing, and public goods, referring to the provision of goods and services that private firms would not supply on their own.

It is important to note that a number of industrial policy instruments are expensive, meaning that governments need considerable fiscal resources to implement them. This in turn requires fiscal capacity, i.e. the ability of the state to collect taxes, and adequate fiscal space (see Section 3.3).

In this regard, the main advantage of the Weiss (2015) classification is that it distinguishes industrial policy instruments that are available to countries with different income levels.

Table 5 shows the policy instruments available to low-income countries. In the product market domain, market-based policy instruments aim to increase the profitability of manufacturing activities. Import tariffs and export subsidies have been among the most important instruments used in East Asia and Latin America. While not completely prohibited under the new global trading regime, today the use of these instruments is restricted or discouraged (see Section 5.2.3). Therefore, alternative instruments, such as duty drawbacks and tax incentives, can be used. Among the instruments that do not directly affect prices are public procurement, but also (less costly and less controversial) instruments such as services to reduce information asymmetries (organization of fairs, linkage programmes, and other services that facilitate domestic and foreign investments). In the capital market domain, directed credits and interest rate subsidies (both market-based instruments) as well as development banks (a public goods instrument) played a key role in the industrialization strategy of first-tier East Asian newly industrialized economies (NIEs) (see Sections 3.1.2 and 4.3). In the land market domain, public goods instruments such as export processing zones (EPZs) and special economic zones (SEZs), which are among the most popular instruments in developing economies, have been used to attract foreign investment (see Section 4.4.2). Through EPZs and SEZs, governments can provide foreign firms with high-quality infrastructure, including reliable energy supply and fast Internet connections, and offer various tax incentives to compensate for the possible difficulties that firms might encounter by moving to their country. In the domain of technology, given the limited skill levels and financial
resources available in low-income economies, industrial policy instruments should aim to facilitate the absorption of foreign knowledge by supporting technology transfer and extension programmes, both public goods instruments.

Table 5: Industrial policies in low-income economies

<table>
<thead>
<tr>
<th>Policy domain</th>
<th>Instrument</th>
<th>Market-based</th>
<th>Public goods/direct provision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product market</td>
<td>Import tariffs, export subsidies, duty drawbacks, tax credits, investment/FDI incentives</td>
<td>Procurement policy, export market information/trade fairs, linkage programmes, FDI country marketing, one-stop shops, investment promotion agencies</td>
<td></td>
</tr>
<tr>
<td>Labour market</td>
<td>Wage tax credits/subsidies, training grants</td>
<td>Training institutes, skills, councils</td>
<td></td>
</tr>
<tr>
<td>Capital market</td>
<td>Directed credit, interest rate subsidies</td>
<td>Loan guarantees, development bank lending</td>
<td></td>
</tr>
<tr>
<td>Land market</td>
<td>Subsidized rental</td>
<td>EPZs/SEZs, factory shells, infrastructure, legislative change, incubator programmes</td>
<td></td>
</tr>
<tr>
<td>Technology</td>
<td>R&D subsidies, grants</td>
<td>Technology transfer support, technology extension programmes</td>
<td></td>
</tr>
</tbody>
</table>

Notes: EPZs: export processing zones; FDI: foreign direct investment; SEZs: special economic zones.

Table 6 tailors the previous classification of industrial policy instruments to middle-income economies. Comparing this table with Table 5 allows us to identify more costly and complex industrial policy instruments that middle-income countries can introduce to upgrade their industrial strategies and sustain industrialization and development. These instruments are found in two policy domains: capital markets and technology. Capital markets develop along with the level of development of the country, allowing governments to provide venture capital to projects with a high-risk profile and high growth potential (e.g. innovative projects in new technological fields). Similarly, as firms accumulate knowledge and capabilities and the state becomes more technically and administratively capable, governments can offer a number of incentives to stimulate innovation. In the technology domain, the classification includes two market-based policy instruments: research and development (R&D) subsidies (credits with subsidized interest rates, or tax rebates, for firms investing in R&D), and grants (disbursements of financial resources to advance promising technological or scientific fields). Instruments that do not directly affect markets include establishing and supporting public-private research consortia and research institutes. The experience of East Asian economies is once more illuminating in this regard: public-private research consortia and research institutes, initiated and financially supported by the government, created a strong knowledge base and established a strong research and innovation network (see Section 4.4.1).

Table 6: Industrial policies in middle-income economies

<table>
<thead>
<tr>
<th>Policy domain</th>
<th>Instrument</th>
<th>Market-based</th>
<th>Public goods/direct provision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product market</td>
<td>Import tariffs, duty drawbacks, tax credits, investment/FDI incentives</td>
<td>Procurement policy, export market information/trade fairs, linkage programmes, FDI country marketing, one-stop shops, investment promotion agencies</td>
<td></td>
</tr>
<tr>
<td>Labour market</td>
<td>Wage tax credits/subsidies, training grants</td>
<td>Training institutes, skills, councils</td>
<td></td>
</tr>
<tr>
<td>Capital market</td>
<td>Interest rate subsidies, loan guarantees</td>
<td>Financial regulation, development bank (first/second tier) lending, venture capital</td>
<td></td>
</tr>
<tr>
<td>Land market</td>
<td>Subsidized rental</td>
<td>EPZs/SEZs, factory shells, infrastructure, legislative change, incubator programmes</td>
<td></td>
</tr>
<tr>
<td>Technology</td>
<td>R&D subsidies, grants</td>
<td>Public-private research consortia, public research institutes, technology transfer support, technology extension programmes</td>
<td></td>
</tr>
</tbody>
</table>

Notes: EPZs: export processing zones; FDI: foreign direct investment; R&D: research and development; SEZs: special economic zones.
2.3 Implementing industrial policy

There is no set rule as to how countries should design, coordinate, and implement an industrial policy. Successful cases have come through varying constellations of histories, institutional assets, time frames, natural resource endowments, and other factors. This means that there is not one simple “recipe” for industrial policy success. Instead, economic history shows that while it is important to learn from the experiences of other countries (both successes and failures), each country has to individually experiment and learn by doing when establishing its own industrial policy programmes.

Despite these country specificities, various authors have produced some general advice on how to effectively design and implement industrial policy. This concerns two main aspects of industrial policymaking processes: (a) how to build an institutional setting capable of implementing policies effectively; and (b) how to manage the delicate relationship with the private sector.

Devlin and Moguillansky (2011) outline a set of strategic and operational principles that they argue have emerged out of the good and bad experiences of a wide range of countries. They start with two over-arching strategic principles that should serve as the guide for effective industrial policy implementation. First, state initiatives must be pro-active, selective, and focused on the long term, rather than simply tied to the electoral cycle or the need to gain popular legitimacy over the short term to remain in power. Here the problem of carefully “picking winners” (and getting rid of “losers” over time) is of particular relevance. The government has to proactively seek solutions to cope with the problems faced by industry and improve government support to it in order for businesses to upgrade towards more productive and value-adding activities. The second strategic imperative is to stress the inter-connectedness of the industrial development and structural transformation process, as well as the need to forge a common vision for collective action. The authors argue that public-private alliances are a means to accomplish this crucial task. Such structures allow for information sharing and collective action, but preclude the possibility of the state being “captured” by private interests.

Devlin and Moguillansky (2011) also provide a list of operational principles that the public sector could implement when designing and pursuing an industrial policy (see Table 7).

<table>
<thead>
<tr>
<th>Table 7</th>
<th>Key operational principles of industrial policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principle</td>
<td>Key issues</td>
</tr>
<tr>
<td>Give the baton to the “real” sector ministries.</td>
<td>Technical leadership of an industrial policy must be in the hands of key ministries (e.g. industry ministry, or trade and industry ministry) and executing agencies. ¹</td>
</tr>
<tr>
<td>Promote medium- and long-term strategic thinking on policy.</td>
<td>This point emphasizes the importance of allowing ministries and executing agencies sufficient time to design and implement an industrial policy. Like governments themselves, bureaucratic units can get trapped into a short-term mentality that discourages strategic thinking and careful action.</td>
</tr>
<tr>
<td>Each priority area or activity in a strategy should have at least one dedicated implementing agency.</td>
<td>While acknowledging the problem of coordination, effective industrial policy requires dedicated specialized units to manage and oversee an industrial policy programme. Each main function required in the industrial policy might best be assigned to a responsible agency. ²</td>
</tr>
<tr>
<td>The more structured and specific a strategy, the greater the need for coordination among ministries and agencies and the more likely it is that higher-level coordination will not be enough.</td>
<td>Coordination of an industrial policy programme is a difficult task in practice, but its implementation can be facilitated by establishing a clear mandate and hierarchy of functions for each agency involved.</td>
</tr>
<tr>
<td>For medium- and long-term strategies to be effective, public sector personnel must be highly professional, career-oriented, and non-politicized.</td>
<td>Competent and meritocratic bureaucracies are widely seen as a linchpin for the success of industrial policy. This requires competitive recruitment, above-average salary and/or working conditions, extensive life-long (technical) training, promotion by merit, and insulation from politicization. ³</td>
</tr>
<tr>
<td>The effective application of incentives must be assessed not only by how they are individually managed but also by how they are coordinated for a systemic effect.</td>
<td>Sectors and activities are often interconnected. Coordination of incentives across agencies is therefore important to guarantee policy coherence and maximize the long-term impact of industrial policies.</td>
</tr>
</tbody>
</table>
According to Rodrik (2008: v), “[t]hree key design attributes that industrial policy must possess are embeddedness, carrots-and-sticks, and accountability.” Embeddedness concerns how close state-business relations should be (see below). The expression “carrots and sticks” refers to the combination of incentives (carrots) and discipline (sticks) that industrial policy should seek. Finally, accountability refers to the need to monitor bureaucrats and hold them responsible for how they spend public money. The first two of these attributes clearly concern state-business relations: the state needs to be embedded in close relations with the private sector, and state support must be combined with discipline (carrot-and-sticks) in order to reduce the chances of rent-seeking and corruption. The abundance of literature has studied state-business relations. This debate is inevitably linked to the concept of state capacity, i.e. the capacity of the state to perform all its tasks effectively and efficiently (see Section 3.3). While it is not possible to provide an exhaustive review of this literature in this module, we try to answer two main questions: (a) What are the essential ingredients for effective cooperation between the state and the business sector? and (b) How can this effective cooperation be achieved in practice?

Evans (1995) was one of the first authors to contribute to this important topic. He emphasizes that the crucial requirement for successful industrial policy is that private enterprises and economic elites play a role in its formulation and implementation, an idea that was captured in his notion of “embedded autonomy.” This concept affirms that the state should proactively partner with the private sector and non-governmental bodies, but it also emphasizes that the state must at the same time resist being captured by such interests so that it can ensure that the aims of the society as a whole are addressed rather than those of private entities. Rodrik (2004) also focuses on the importance of business-state collaboration to reduce information asymmetries and co-design an industrial policy that can truly tackle the obstacles faced by the private sector. In doing so, the state needs to strike the right balance between being sufficiently close to the private sector – in order to collaborate with and understand its challenges – and at the same time being sufficiently far from it – in order to avoid rent-seeking and corruption (in line with the embedded autonomy concept introduced by Evans, 1995).
Empirical evidence supports this view. For example, the process of industrial policymaking in the Republic of Korea saw an active government working in partnership with the largest family-owned industrial enterprises – the chaebol – and helping them upgrade their technologies, improve their products, introduce new products, and commence with exports. At the same time, efficiency was maintained by ensuring that an unsuccessful chaebol would lose favour and state support would be transferred to another chaebol (Amsden, 1989; Chang, 1994).

There are several elements of state-business relations – in particular information exchange, reciprocity, credibility, and trust – that are important for industrial policymaking (Schneider and Maxfield, 1997). With timely information exchanges, the government can have a better idea of the needs and general interests of the private sector, as well as access data that can help evaluate public policies. The private sector can in turn receive information on a number of issues that are important to define its investment plans (e.g. labour market conditions, investment conditions, export and sectoral market prospects).

Reciprocity in state-business relations has been defined by Amsden (1989: 146) as follows: “[I]n direct exchange for subsidies, the state exacts certain performance standards from firms.” This means that governments should ask for performance improvements – for example in terms of export performance, quality standards, and productivity gains – in return for support. In many cases, however, governments have been unable to monitor the implementation of such performance requirements and take appropriate action when they were not met (Evans, 1998; Lall, 2000; Schneider and Maxfield, 1997).

This “support/performance bargain”, as Evans (1998) calls it, cannot work well without two elements of state-business relations identified by Schneider and Maxfield (1997), namely fluid communication and mutual trust between the government and the private sector. Such communication and trust need to be built day by day through meetings, deliberative councils, and a number of ad hoc solutions that governments and business develop together in a complex and lengthy process of trial and error. As Schneider (2013: 13) puts it: “[I]n most successful cases of business-government collaboration, it was not a matter of simply assembling an initial set of institutions and allowing a virtuous process to unfold, but rather a more ad hoc and dynamic evolution where participants came together, sometimes informally to begin with, then cooperated through some initial set of institutions which over time the participants (or exogenous shocks) modified to better suit their evolving functions and political circumstances.”

To be able to do all this, the government needs to be credible – i.e. policies need to be sound and their implementation certain, and state-business relations need to be based on mutual trust. One way in which the government can show that it is credible is by phasing out support when industrial policies do not pay off. While mistakes are possible and the government should not minimize risky activities (due to the entrepreneurial nature of industrial policymaking), governments should minimize the costs of these failures, for example by discontinuing support. This is also related to the need for industrial policies to be able to “renew themselves”, i.e. to change over time. This means that governments might withdraw support to specific industries or firms as a result of the ongoing process of industrialization, reflecting the evolving needs and circumstances in which the process of discovery of new areas of (dynamic) comparative advantage occurs (Rodrik, 2004).

3 Why adopt an industrial policy?

By now we know how the literature has defined industrial policy and how industrial policy can be most effectively designed and implemented. This section aims to answer another crucial question: why do countries need an industrial policy in the first place? To this end, Section 3.1 reviews the historical debate on industrial policy, focusing in particular on the divergent experiences of East Asian and Latin American economies. It looks into why these economies have engaged in industrial policy and what concerns those policies have raised.

Based on this analysis, Sections 3.2 and 3.3 review the most accepted arguments for and against industrial policy. As will be noted, arguments in support of industrial policy are theoretical, i.e. based on key economic concepts. Arguments against industrial policy, on the other hand, are practical in nature, i.e. they are related to how industrial policy has been implemented in practice.

3.1 A historical perspective

The literature on industrial policy has found fertile ground for discussion in the experiences of East Asia and Latin America. As discussed in Module 1, in the 1950s, Latin American economies were better positioned than East Asian economies to catch up with the advanced world, as they possessed more developed industrial sectors than...
Industrial policy: a theoretical and practical framework to analyse and apply industrial policy

44 The term "revisionists" comes from World Bank (1993).

45 These critiques extended to other developing regions (e.g. Krueger, 1974, on India and Turkey).

46 After the Second World War, most developing countries, from India to the Philippines and Turkey and most countries in the African continent, adopted ISI, albeit using different policy mixes and achieving highly heterogeneous results.

47 By creating barriers to trade, ISI can be partly unseated to the challenges posed by the rise of global value chains (see Section 5.2.3). In addition, today the policy space to implement ISI is to some extent restricted by the prevailing global trade order (see Section 5.2.3).

those in East Asia. In spite of this, in only three decades, first-tier East Asian economies, namely the Republic of Korea, Taiwan Province of China, Singapore, and Hong Kong (China) (although with substantial differences with second-tier NIES; see Section 4.4.2) managed to accumulate capital and capabilities so rapidly that they industrialized and joined the most advanced economies in the world. Latin American countries, on the other hand, enjoyed only modest and discontinuous economic and productivity growth, leading to stagnation and premature deindustrialization (see Sections 2.3.3 and 3.3 of Module 1). Public policies and industrial policy in particular have been identified as the key factors behind these divergent trajectories, as East Asian policies effectively spurred rapid capital accumulation in the form of plants, equipment, infrastructures, as well as human capital and R&D.

This section summarizes the literature on East Asia and Latin America by presenting the main arguments and contributions by (a) neoclassical economists; (b) "revisionists" (Alice Amsden, Robert Wade, and Ha-Joon Chang); (c) the literature on the developmental state; (d) the literature on the investment-profit nexus; (e) Latin American structuralist economists; and (f) Schumpeterian evolutionary economists.

3.1.1 The neoclassical tradition

Authors in the neoclassical tradition attribute the East Asian success to limited state intervention and functional industrial policies aimed at creating a favourable business environment through human capital formation, infrastructural investments, and maintenance of political and macroeconomic stability. East Asian policies essentially aimed at "getting prices right", meaning that they largely avoided distorting market prices (through price controls, subsidies, or other selective interventions), thus letting market signals drive resource allocation. The opposite happened in Latin American economies, where governments intervened in market functioning, thus distorting market prices and granting excessive protection to domestic firms. Based on the neoclassical accounts, the discretionary nature of selective industrial policies in Latin America often induced rent-seeking behaviour, which ultimately led to inefficient resource allocation and unsatisfactory industrial results. In addition, it was argued that the interference of the state was so arbitrary and massive that delays and excessive paperwork related to bureaucratic controls and procedures, such as those required to obtain import licenses, hindered investments from genuine entrepreneurs (Balassa, 1971, 1982; Edwards, 1988; Little et al., 1970; Wolf, 1988; World Bank, 1987; see Box 7 for a brief discussion on the World Bank report on the "East Asian miracle").

In the neoclassical literature, Latin America’s adoption of import-substitution industrialization (ISI) and East Asia’s adoption of export-oriented industrialization (EOI) are also key to the interpretation of the divergent economic and industrial performances of these two regions. These strategies can be thought of as bundles of policy measures aimed at industrialization. In particular, ISI refers to the strategy by which countries try to industrialize by substituting industrial imports with domestic goods. This strategy requires the government to put in place a complex system of market protection instruments such as import tariffs and restrictions, investment incentives such as subsidized credits and tax incentives, and innovation incentives such as R&D subsidies. This policy mix aims to encourage production by domestic firms by protecting them from competition from foreign products, which, in developing economies, are likely to be less expensive and of higher quality.

EOI refers to the strategy by which countries try to industrialize by boosting exports. This can be achieved through subsidized export credits and tax incentives. ISI and EOI are motivated by the same basic need: relaxing balance-of-payments constraints through savings of foreign exchange (through import substitution) and generating more foreign exchange (through export promotion). Together with this objective, ISI and EOI also aim to spur investments, create employment, allow firms to benefit from a more efficient scale of production, and give firms opportunities to accumulate knowledge, skills, and capabilities. By focusing on external rather than internal markets, EOI strategies are also particularly beneficial to small economies that cannot count on a sufficiently large domestic market to which firms can sell their products.

According to neoclassical analyses, while East Asia had relied on ISI early on in its industrialization process, it promptly liberalized imports and embarked on EOI. This switch allowed it to increase production volumes, generate more foreign exchange, and learn from the production process (i.e. learning by doing), from foreign firms and through the process of meeting international quality standards. In the neoclassical view, Latin American countries continued implementing ISI even when substitution possibilities had been exhausted and it was clear that the strategy was not leading to faster industrialization. Furthermore, it was argued that in Latin America, ISI
produced a bias against exports, which further exacerbated the foreign exchange constraints faced by Latin American countries, ultimately contributing to the dramatic debt crisis of the 1980s. Finally, it was noted that for an economy that heavily relies on imports – since domestic firms cannot provide most of the inputs needed for production – ISI makes imports more expensive, resulting in higher production costs and reduced consumption (Krueger, 1978, 1984, 1990a; Little et al., 1970).

This interpretation of the history of East Asia and Latin America ultimately led neoclassical economists to argue against selective industrial policy. This view permeated the Washington Consensus and its policy prescriptions (Williamson, 1990), as well as the broad pessimism with regard to industrial policy that emerged in the early 1980s.

3.1.2 The interpretation of the “revisionists”

“Revisionists” strongly contested the neoclassical interpretation of the “East Asian miracle”. Their work documents the role of selective industrial policies in the form of investment incentives, as well as domestic market protection and export promotion instruments. This strand of literature contradicts the neoclassical interpretation in various aspects, most notably on the use of selective industrial policy instruments and the late abandonment of ISI.

Among the pioneering works on the nature and role of industrial policy in East Asian economies, Alice Amsden (1989) demonstrates how the significant industrial success of the Republic of Korea was an outcome of a (selective) industrial policy that was strategically well designed, flexible, and operationally well managed. She stresses in particular the success of technological upgrading in terms of exports and in introducing clear performance standards for the companies benefitting from state support. Related to the experience of the Republic of Korea, Amsden (1989) coined the phrase “getting prices wrong”, meaning that the government had deliberately attempted to distort market prices in order to support industrialization. Two prices, in particular, were targeted: long-term interest rates and foreign exchange rates. Preferential long-term interest rates eased the financing constraints of targeted sectors and firms, and thus stimulated investments. These selective incentives ultimately orientated the process of structural change towards industries that maximized growth and investment opportunities and spurred the accumulation of capabilities. A competitive real exchange rate (i.e. a cheap domestic currency relative to foreign currencies) lowered the price of domestic goods on global markets, which in turn stimulated exports and economic growth.

Thanks to his extensive work on Taiwan Province of China, Wade (1990) has also made an important contribution to the debate on the role of industrial policies. In his view, from the 1960s onward, Taiwan Province of China was able to design and implement a very sophisticated industrial policy that helped the economy emerge from poverty to become one of the most successful and technologically advanced economies in the world. Wade’s contribution to the theory and practice of industrial policy centres around his claim that the state is required to “guide the market” in building capabilities as the route to export success, that is, to pursue a more active role in the process of economic development.

With the empirical evidence of the “East Asian miracle” in mind, Chang (2002) goes further back in history to show how virtually all of today’s richest economies were able to develop thanks to what we now call an industrial policy. Chang shows that today’s developed countries in Western Europe and North America utilized industrial policies that allowed them to master the production of many new manufactured products, which were subsequently sold on world markets in exchange for raw materials and other non-industrial goods. Such policies included non-tariff import barriers, subsidized inputs, and various incentives to investments.

With respect to the debate on ISI and EOI, revisionists criticize the neoclassical interpretation of the East Asian experience according to which ISI was adopted and then quickly abandoned. Instead, they argue that East Asian industrial policies were particularly successful because they effectively combined ISI and EOI. In this regard, Amsden (2001) coined the expression “selective seclusion” referring to the mix of selective interventions that created a situation by which East Asian economies were not completely open to trade. Instead, through selective seclusion, the government “filtered” foreign knowledge and goods that entered the economy and created a complex system of incentives and discipline. By combining import substitution with export promotion, “exports are built into import substitutes through long-range capacity planning” [emphasis by the original author] (Amsden 2001: 174). In practice, in the Republic of Korea and Taiwan Province of China, this was achieved by linking ISI and EOI incentives so that exporters and their suppliers could obtain imported inputs and capital goods
more freely and at lower costs (UNCTAD, 1994). In addition, competition policy protected these firms, giving them market power and allowing them to become market leaders. This practice created above-free-market rents, but at the same time contributed to the success of the industrial strategy through investment, higher exports, and productivity growth. As Wade (1990: 129) puts it, "those who get the windfalls ('rents') from importing scarce commodities are at the same time contributing to the economic success of the country by exporting" (see the literature on the profit-investment nexus in Section 3.1.4).

Box 7

The World Bank report on East Asian economic growth and public policies

In an effort to reconcile the views of neoclassical economists and revisionists, the World Bank (1993) published a report in 1993 titled "The East Asian Miracle: Economic Growth and Public Policies". The report supports a "market-friendly" view of the East Asian experience, according to which East Asian governments did less in areas where markets worked – in the production sector – and did more where markets could not be relied upon – in human capital formation, health and nutrition, and social, physical, and legal infrastructure.

The report recognizes the government's role in two main areas, namely guaranteeing macroeconomic stability and investing in human capital. Productivity growth is considered important, but not the dominant factor. The report acknowledges the use of selective industrial policy in East Asia, even though it deemphasizes its role, claiming for example that "East Asian success sometimes occurred in spite of rather than because of market interventions" (emphasis in the original text) (World Bank, 1993: 86).

While the report was meant to absorb some of the criticisms of the so-called revisionists, it has been noted that its conclusions are very much in line with the neoclassical interpretation and fail to go beyond traditional dichotomies such as export promotion and import substitution (Akyüz et al., 1998; Fishlow et al., 1994).

Source: Authors.

3.1.3 The literature on the developmental state

The literature on the developmental state started with Johnson's (1982) analysis of the Japanese "miracle" (see Box 8), in which he captures the role of the Japanese government in making Japan one of the richest economies of the world. According to the author, the Japanese state was developmental because it consciously and consistently aimed at development. In Johnson's words, "[t]he issue is not one of the state intervention in the economy. All states intervene in their economies for various reasons. ... Japan is a good example of a state in which the developmental orientation predominates" (Johnson, 1982: 17). Johnson (1987: 140) also explained a development state more precisely as one where (i) there is a developmentally-oriented political elite committed to break out of the stagnation of dependency and underdevelopment and for whom economic growth is a fundamental goal, (ii) such an elite is not committed first and foremost to the enhancement and perpetuation of its own elite privileges, and (iii) the elite sees its primary leadership task to discover how, organizationally, to make its own development goals compatible with the market mechanism and the private pursuit of profit." Hence, the developmental state commits to development and can effectively translate its commitment into policies and institutions capable of achieving it.

In order to accomplish this mission, the Japanese developmental state followed two main routes: it made manufacturing activities profitable enough to attract private enterprises, and it induced these enterprises to redistribute their (monopoly) profits to the society at large, for example through reinvestments (see Section 3.1.4). In order to make manufacturing activities more attractive, the developmental state would perform four core functions: (a) development banking (see Section 4.2.1); (b) local content management, building national firms, capabilities, and saving, or earning foreign exchange; (c) "selective seclusion", i.e. opening some markets to foreign actors and keeping others closed (see Sections 3.1.2 and 3.1.4); and (d) national firm formation, creating national leaders in strategic industries (Amsden, 2001). In order to redistribute profits to the larger society (e.g. through new investment and employment), the developmental state would regulate and impose discipline on the private sector, for example through the enforcement of performance criteria described in Section 2.3.

The developmental state concept was then taken up by others seeking to provide an explanatory framework for the experiences of the Republic of Korea and Taiwan Province of China (Amsden, 1989; Onis, 1991; UNCTAD, 1994, 1996, 2003; Wade, 1990; Woo-Cumings, 1999), Malaysia, Indonesia, and Thailand (Lall, 1996; Meyeathan, 1994), Peo-
Several observers have called for updating the concept of the developmental state, reflecting the experiences of a larger range of countries and current challenges to industrialization and industrial policy. UNCTAD (2009) discusses how the developmental state concept can be updated to the 21st century. According to Wade (2015), the roles of the classical developmental state cannot be considered as they used to in the classical developmental state. The literature on democratic developmental states has agreed that in order to build democratic developmental states, it is important to harness citizen participation in governance and developmental issues. The literature on modern governance can influence the conceptualization of a 21st century version of the developmental state. In particular, this literature can provide policymakers with new ideas on modalities of interactions with the society (see Jessop, 1998, for the concept of “network governance”), mixes of policy instruments (Howlett, 2004), and new approaches to improve administrative effectiveness (Evans, 2005).

According to Wade (2015), most of the roles of the classic developmental state cannot be performed as they used to in the classical developmental state model, due primarily to the reduced financial system and the allocation of (scarce) foreign exchange. MITI officials introduced a range of sector-based industrial policies and proved capable of arranging all of the necessary preconditions for successful establishment of firms and subsequent growth of the economy.

In the important machine tool sector, boosted by MITI’s efforts to promote R&D, targeted support was provided to specific micro- and small enterprises capable of providing sophisticated intermediate goods. Backed by generous financial assistance, Japan had overtaken the United States as the world’s leading producer in this sector by the 1980s (Amsden, 2007).

Another case is that of industrial robotics, where Japanese producers managed to edge out US-based firms to become the world’s leading producers by the 1980s. Important contributions to making this happen came from MITI and included numerous arrangements to stimulate initial demand for Japanese-made industrial robots among Japan’s small and medium-sized enterprises (SMEs) (to allow for learning by doing); significant support for R&D; and petitioning help from the Japan Development Bank (Porter, 1990). MITI has been especially active in promoting microenterprises and SMEs, which created a competitive advantage for Japan’s largest enterprises by providing them with easy access to quality and low-cost inputs (MITI, 1995).
module

Industrial policy: a theoretical and practical framework to analyse and apply industrial policy

2

3.1.4 The literature on the profit-investment and export-investment nexus

The literature on the profit-investment and export-investment nexus (Akyüz and Gore, 1996; Akyüz et al., 1998; UNCTAD, 1994, 1996, 1997, 2002, 2003) explains the high rates of savings and investments that characterized East Asian NIEs starting in the 1950s. Akyüz and Gore (1996: 461) stress “that the success of East Asian industrialization depended very much on the role of government intervention in accelerating capital accumulation and growth, and that government policy achieved this by animating the investment-profits nexus; that is, the dynamic interactions between profits and investment which arise because profits are simultaneously an incentive for investment, a source of investment and an outcome of investment.”

This thesis builds on three propositions:

- High rates of investment greatly contributed to fast economic growth in East Asia;
- Profits were the main source of investment; and
- Governments accelerated investment by creating above-free-market profits.

How did East Asian governments create rents and how did these rents spur investment? First, functional industrial policies were aimed at guaranteeing a pro-investment macroeconomic and political climate. Second, a complex and well-coordinated mix of selective industrial policies boosted profits above free-market levels, restricted luxury consumption, and eliminated speculative investment opportunities, thus encouraging productive investments. In particular, fiscal incentives, such as tax breaks and special depreciation allowances, boosted corporate savings and provided firms with financial resources to be reinvested. Higher investment enhanced capital utilization rates and productivity, thus further raising corporate profits. Controls on interest rates, credit allocation, and managed competition (e.g. encouragement of mergers, coordination of capacity expansion, restrictions on foreign investment, screening of technology acquisitions, etc.) further raised profits above free-market levels by distorting market prices and creating national leading firms.

In Japan, for example, credit rationing was used together with other mechanisms to coordinate capacity expansion in order to avoid “investment races” among large oligopolistic firms, as these would have decreased profits (Akyüz and Gore, 1996). Restrictions on imports, high taxes on luxury consumption, restrictions on consumer credits, and restrictions on the outflow of capital guaranteed that these policy-driven profits would not be diverted towards unproductive uses. Rent-creating incentives were preferentially allocated to industries with greater potential for learning, scale economies and productivity enhancements, and the strongest linkages to the rest of the economy. The generation of rents through incentives stimulated investment, creating what is called the profit-investment nexus.

Another important characteristic of government-generated rents was their link with export performance. According to this strand of literature, although labour-intensive industries were in line with the comparative advantage of the East Asian economies, diversification did not happen automatically. Functional and selective industrial policies in the form of support services, domestic market protection, and export subsidies played a crucial role in nurturing these industries. In particular, subsidies, domestic market protection, and access to import licenses were subject to export performance (see also Section 2.3 and Section 3.1.2). In this way, the profit-investment nexus was also linked to an export-investment nexus.

In industrializing countries with incipient capital goods’ industries, investments naturally lead to an increase in imports, as the expansion of production requires more capital and intermediate goods that need to be sourced outside the country. In order to finance these imports without increasing external borrowing and thus avoid balance-of-payments constraints, export expansion is necessary. Export expansion allows for sustaining the momentum of industrialization without resorting to excessive external borrowing. This is not a one-off challenge: even when capital and intermediate goods’ industries
are established, structural transformation is not over yet. Moving up value chains and upgrading technologies continues to demand technologically advanced (imported) capital goods and intermediate inputs, requiring therefore more export expansion.

3.1.5 The Latin American structuralist economists

The debate about industrial policy has also been informed by the writings of Latin American structuralist economists, particularly the Argentinian economist Raúl Prebisch, who also served as the founding Secretary-General of the United Nations Conference on Trade and Development (UNCTAD). In his major work “The Economic Development of Latin America and Its Principal Problems” (1950), he predicates the ISI approach on the ability of countries to substitute for an expanding range of manufactured imports, also incorporating technological advances and innovations into locally manufactured products. According to Latin American structuralists, in several cases and within the right context (e.g. in the automotive industry in Brazil) ISI spurred growth in manufacturing and succeeded in raising productivity and generating indigenous innovation. However, it failed to fully substitute for foreign manufactured products and did not lead to sustained industrialization (Katz, 1987).

The positions of Prebisch and other structuralists supporting ISI were not meant to be against EOI: Prebisch himself encouraged combining ISI with EOI (Prebisch, 1950). Still, in practice, one of the central problems of Latin American industrial policies was that they focused more on ISI than EOI, contributing to the balance-of-payments constraints that led to the debt crisis of the 1980s. Another recognized pitfall of Latin American industrial policies concerns the process of industrial policymaking. In particular, the lack of performance criteria and limited state capacity to effectively implement industrial policy and impose discipline on the private sector contributed to the limited success of ISI. Little disagreement exists on this issue: limited state capacity and ill-suited state-business relations are widely considered among the most important determinants of the divergence of industrial policy outcomes between East Asia and Latin America.

ISI was ultimately abandoned in many Latin American countries under both internal and external pressure. Following the Washington Consensus, functional industrial policies replaced ISI. Latin American structuralists criticized the new policy regime and its impact on productivity and the process of accumulation of capabilities, holding it responsible for premature deindustrialization. Their studies show that import liberalization and the elimination of subsidies and other investment incentives drove domestic (less competitive) producers out of the market, also halting the processes of learning and accumulation of capabilities initiated and sustained by ISI (Cimoli and Katz, 2003; Katz, 2000).

3.1.6 The contribution of Schumpeterian or evolutionary economists

Schumpeterian or evolutionary economists also contributed to the debate on industrial policy, highlighting the role of public policies in stimulating technological change and the accumulation of capabilities (see Nübler, 2014; and Section 3.1.3.3 of Module 1 for a discussion of the contribution of the Schumpeterian economics school to the debate on structural transformation). This strand of literature conceptualizes the environment in which innovation occurs as an innovation system made up of firms, education and research centres, governments, and financial institutions, and forged by the interactions between these actors. Public policies constitute an important element of the innovation system, as they can increase the innovation potential of each actor and facilitate interactions among them. These two main roles of public policies are key to maximizing opportunities for learning and for knowledge and technology transfer.

This idea was confirmed by a number of case studies. Based on the experience of East Asian economies, authors in this tradition stress that governments can play an important role in stimulating technological upgrading. In their interpretation, in East Asian economies, learning and innovation did not happen automatically as a result of high investment in physical and human capital. Public policies, and in particular industrial policies, initiated and sustained these processes. Industrial policy measures in East Asia were systemic, i.e. coordinated across a number of policy domains. Education policies aimed to train scientists and engineers, infrastructure investment created a science and technology infrastructure, and various incentives encouraged R&D efforts within firms (Freeman, 1987; Kim, 1992, 1997; Kim and Nelson, 2000; Lall, 2006; Lall and Teubal, 1998; Lee, 2015; Lee and Lim, 2001).

Based on this literature, evolutionary economists conclude that industrial policies should:
• Focus on learning and adapt to its different phases. Firms and other actors in the innovation system learn in different ways, including through cooperation and networks; reverse-engineering, imitation, and adaptation of existing products, services, and organizational settings; and R&D and the generation of new knowledge. Industrial policies should accompany these phases and change their policy mixes accordingly (see Section 4.4. for some examples).

• Experiment with different combinations of policy instruments in different technological areas, due to the uncertainty of innovation processes. This also means that government intervention should try to reduce this uncertainty by exploring new technological areas, and therefore create new business opportunities. In doing so, the state becomes an entrepreneur, exploring new promising technological fields, taking risks, creating new knowledge and networks, and harnessing the private sector to exploit these new business opportunities and thus contribute to the long-term vision of development of the country (Mazzucato, 2013).

3.1.7 Summarizing the industrial policy debate

Table 8 summarizes the main arguments that have animated the industrial policy debate, highlighting the interpretations of the different strands of the literature reviewed in this section.

<table>
<thead>
<tr>
<th>Interpretation of East Asian and Latin American industrial policies</th>
<th>Is selective industrial policy necessary?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neoclassical economists</td>
<td>NO. Industrial policies should only aim to correct market failures. The market can select industries and firms and ensure efficient allocation of resources.</td>
</tr>
<tr>
<td>The East Asian miracle was the outcome of functional industrial policies. Latin America did not experience a similar trajectory because its selective industrial policies were distorting and wasted public resources.</td>
<td></td>
</tr>
<tr>
<td>Revisionists, developmental state and profit-investment nexus literature, and evolutionary economists</td>
<td>YES. Selective industrial policies can spur industrialization by targeting industries with high potential for economies of scale and externalities, and with strong obstacles to growth, and by promoting the accumulation of skills and capabilities in these industries.</td>
</tr>
<tr>
<td>The government played an important role in the industrialization processes of East Asian economies. Selective industrial policies were crucial to the success of East Asia. Among these, science, technology and innovation (STI) policies spurred structural change towards dynamic industries and fostered technological upgrading and innovation.</td>
<td></td>
</tr>
<tr>
<td>Latin American structuralists</td>
<td></td>
</tr>
<tr>
<td>Latin American industrial policies resulted in some manufacturing and productivity growth, but for a number of reasons could not become an engine of sustained industrialization. Washington Consensus policies halted the processes of learning initiated and spurred by ISI, leading to premature deindustrialization.</td>
<td></td>
</tr>
</tbody>
</table>

Source: Authors’ elaboration based on Peres and Primi (2009).

3.2 Arguments in favour of industrial policy

Although other views have been expressed in favour of an industrial policy, the most widely accepted argument has generally been based on the notion of market failures, whereby “a competitive market system does not yield the socially efficient outcome” (Pack and Saggi, 2006: 3). This situation is exacerbated in the context of developing economies that fail to undergo the structural transformation envisioned by the standard neoclassical model because their markets are highly imperfect or missing. Market failures can be corrected through various government interventions. The literature on industrial policy and market failures is extensive. The discussion that follows is based mostly on Grossman (1990), who identifies three cases under which markets fail to work efficiently, namely the presence of economies of scale, externalities, and market imperfections. Each of these can be related to specific factors that are responsible for them.

3.2.1 Economies of scale

Economies of scale consists of static and dynamic economies of scale, and strategic entry promotion discussed in further detail below.

• **Static economies of scale** refer to an inverse relationship between average cost, or cost per unit of output, and the quantity of output, meaning that average cost declines as output increases. The implication is that firms need to produce a minimum amount of goods in order to earn a profit. Two related features of
modern industries are relevant in this context: large fixed entry costs, and the need for a minimum efficient scale of production. Large fixed entry costs (e.g. due to acquisition of capital goods and equipment, or R&D investments required prior to production) restrict the number of profitable firms in a particular industry. A minimum efficient scale of production is defined as that level of production that allows the firm to minimize its average cost. This feature of technology limits the number of firms that can be competitive within a specific industry because each firm must produce the quantity of output that is above this minimum efficient level of production. In both cases, “market failure arises because under the given technology profitable production is not possible for private producers, and the private firm neglects any positive spillover [in terms of lower prices] to consumers in making its entry decision” (Grossman, 1990: 98). In such cases, there is thus a rationale for the government to step in and subsidize firms to reduce initial fixed costs and improve overall efficiency of the production process.

• **Dynamic economies of scale, or learning by doing**, concern cost savings made possible by the accumulation of production experience in a new activity. In other words, as the firm produces more and more output, it learns and becomes more efficient, which in turn leads to a decline in the cost per unit of output. Production is likely to be unprofitable during the learning period, which could prevent the firm from entering the industry in the first place. In the same manner as static economies of scale, there exists a rationale for the government to help firms get through the initial learning period in order to subsequently become competitive. This can be the case for firms in high-technology industries, which work on novel and complex products that require a sustained period of learning before they can use and absorb knowledge and finally be able to introduce innovations in the market. The infant industry argument (see below) can be justified on the grounds of dynamic economies of scale. Especially in the case of developing countries, this ultimately implies that on these grounds, it is possible to justify even industrial policies that target industries that are not consistent with static comparative advantages (see Section 2.1.3). As shown in Module 1, structural transformation is a source of economic growth, and some industries are stronger than others as engines of economic growth, productivity growth, and ultimately innovation and technological change. Yet, generally, market forces are insufficient to foster structural transformation and ignite inception and growth of such new and more advanced industries that either do not exist yet or are not profitable. Therefore, industrial policy should actively seek to support and protect these economic activities that have high potential to drive economic growth and technological change. The creation of new industries outside existing comparative advantages is a complex process that may require continuous effort by the government, for example through investments in infrastructure and development of physical and human capital as well as productive and technological capabilities.

• **Strategic entry promotion** is an argument in favour of the government supporting the entry of domestic firms into global markets. It is based on the notion that in some industries, static and dynamic economies of scale and the limited size of global markets allow for profitable production by only one firm. The strategy requires that a government’s commitment to support the domestic firm be credible and quick enough to deter a foreign firm from entering the market. A successful intervention produces insignificant gains for consumers (since costs of domestic and foreign firms, and hence prices, are nearly identical) but monopoly profits for the domestic firm and, hence, a net national welfare gain. The aerospace industry is a prime example of a case where governments opt for strategic entry promotion (see Section 4.3.1, and Box 13 in particular).

3.2.2 Externality

Externality is defined as the benefits (in the case of positive externalities) or costs (in the case of negative externalities) experienced by a firm as a result of actions taken by another firm. Market failures arise because the firm where the action originates does not have adequate incentives to consider the effects of its action on other firms. Thus, it may shy away from activities that are not profitable for the firm, but which provide positive externalities for other economic actors (or, vice versa, undertake actions that are profitable for the firm but which have a negative effect on other economic actors). In sum, considering the positive externalities to other firms, the benefits of the investment may in fact outweigh the costs (and vice versa, in the case of negative externalities).

This is the case, for example, of education or infrastructure investments. A firm may lack incentive to provide basic education to its workers because
workers might leave the firm (consequently benefiting other firms), or it may lack incentive to build a road to bring its products to the market because the road could also be used by other firms (and competitors) that did not pay for its construction. Similarly, as we will see below, individual entrepreneurs might not find innovative projects financially attractive. In the case of innovation (and in the absence of intellectual property rights), entrepreneurs might be discouraged from investing because the knowledge produced could benefit other firms. Venturing in new commercial areas or productive activities is also risky and can potentially open up new business routes for more firms that did not incur the costs and risks of the discovery process (see the argument below by Hausmann and Rodrik, 2003).

In these scenarios, the market mechanism fails because it allocates too few resources to activities that generate positive externalities, hence the need for intervention. This issue is particularly severe in capital markets, where private banks would not take into account positive externalities when evaluating socially profitable but privately unattractive projects (e.g., innovative projects). This ultimately leads to underinvestment in these projects (Atkinson and Stiglitz, 1980; Stiglitz, 1994).

In what follows, we focus on the two most relevant sources of externalities in the context of industrial policy: knowledge spillovers, and linkages and coordination failures.

- **Knowledge spillovers** refer to the (unintentional) transfer of knowledge throughout the economy and society. Due to knowledge spillovers, a firm might obtain some knowledge without incurring the costs of producing it. This is made possible by the fact that knowledge is non-exhaustive, i.e., its use by one firm does not diminish its original value, and often non-excludable, i.e., the firm that incurred the costs of generating knowledge cannot, or can only marginally, prevent others from using it. Moreover, its use benefits from complementarities, meaning that knowledge is more useful if combined with other knowledge generated elsewhere. Due to these characteristics of knowledge, markets would allocate fewer resources than desirable to the production of knowledge. Prevention of spillovers, however, is socially undesirable because it prevents the use of knowledge by the rest of the economy. The government thus needs to strike a balance between protecting intellectual property of entrepreneurs (e.g., through patents) to give them incentives to create knowledge, and judging what knowledge, and to what extent that knowledge can be beneficial to society if freely shared with other economic actors. The case for government intervention in the event of knowledge spillovers can be considered a specific case of intervention in the supply of public goods, as knowledge shares some of characteristics of other public goods, such as education. As Grossman (1990) argues, human capital formation gives rise to positive externalities because the society and the economy benefit more from it than does a single firm (also because firms cannot prevent workers they have trained from moving to other firms). As a consequence, the market failure arises because firms will invest less than what efficiency requires to instill their workers with general knowledge (as opposed to firm-specific knowledge and skills).

- **Vertical linkages and coordination failures** are relevant in the context of strong linkages between economic activities (see Section 3.1.2 in Module 1 for a discussion on linkages). Simultaneous investments (often in industries characterized by economies of scale) need to be made in order for these linkages to develop. Markets might generate coordination failures because single firms alone would not have enough benefits (and financial resources) to make these investments. In this case, the government can step in and coordinate investments in a manner that is beneficial for a cluster of firms and that can, when all the investments are made simultaneously, result in beneficial outcomes for all the firms involved. The government facilitates coordination of existing firms, but in the same manner it could also coordinate support for new firms (e.g., input suppliers), which would benefit existing firms in the industry (e.g., final producers in need of quality input suppliers). This has led some economists (Murphy et al., 1989; Nurkse, 1953; Rosenstein-Rodan, 1943; see also Shapiro, 2007) to advocate for a “big push” strategy, or “balanced growth path”, where complementary industries are promoted simultaneously.

Another instance where externalities lead to underinvestment in socially valuable ventures is identified by Hausmann and Rodrik (2003) who describe industrial policymaking as a “self-discovery” process in which entrepreneurs try to discover a diversification path for their economy based on dynamic comparative advantages. This self-discovery does not necessarily imply R&D and innovation, but essentially entails finding out which goods can be produced in the country.
at comparatively low costs. This process is generally costly, its results are highly uncertain, and the social benefits of undertaking it are larger than what would accrue to private entrepreneurs. This would justify state intervention in this area. On these grounds, governments would support investments in new non-traditional industries where the economy could potentially have a dynamic comparative advantage. These investments might also be characterized by strong complementarities, needing coordination and considerable amounts of financial resources. This would further call for government’s intervention.

3.2.3 Imperfections in capital markets

Imperfections in capital markets are a third set of factors that lead to market failures. They are essentially due to informational asymmetries. Informational asymmetries in capital markets arise because the borrower knows more about the degree of risk and return of an investment than the lender does. Because of this, firms with riskier projects but also a potentially higher-than-average return (e.g., innovative projects in high-tech industries) will find it difficult to access credit and will therefore need to accept higher costs of borrowing. Lenders who are aware of this adverse selection will raise the interest rate beyond what is appropriate given the initial assessment. Hence, borrowers with marginally better projects are excluded and the overall social benefit is therefore lower than it would be otherwise. The government can address this issue by providing credit with lower interest rates and channelling financial resources into economic activities that are perceived as too risky by the banking system (see Section 4.2).

3.2.4 Arguments that go beyond market failures

While neoclassical economists understand market failure theory as the only possible justification for industrial policy, revisionists, structuralists, and evolutionary economists consider it too restrictive a framework. The critique of the market failure theory rests on its key principles. First, the neoclassical approach considers the perfectly competitive market as the ideal market. However, this is only one of the legitimate theories of markets. Therefore, what could be a failed market according to neoclassical theory might be a functioning market for another theory (Chang, 2003).

Second, according to this theory, once the market failure is fixed, market forces will efficiently direct structural transformation towards a path of economic growth and development. However, because markets cannot always drive structural transformation towards the most promising industries and technological areas, government intervention is necessary to lead the process of structural transformation in these directions (Cimoli et al., 2009; Mazzucato, 2015; Weiss, 2013).

There are also learning-related reasons to reject the market failure theory. Revisionists, structuralists, and evolutionary economists emphasize the role of learning, capabilities, and innovation for structural transformation, giving governments the role of catalysts of these processes. Therefore, according to these strands of literature, stimulating learning, the accumulation of capabilities, and innovation are considered a key justification for government intervention (Cimoli et al., 2009; Mazzucato, 2013; Nübler, 2014; Soete, 2007). It is argued that market signals alone might discourage learning and the accumulation of capabilities because, especially in developing economies, learning opportunities might be greater in industries and economic activities where the economy is in significant comparative disadvantage. This would justify selective industrial policies and picking winners, because these interventions could direct structural transformation towards learning-intensive industries. By venturing into these industries, governments could also explore new business areas and create opportunities for other firms. Indeed, as mentioned in Section 2.1, authors in these strands of literature argue that instead of picking winners, many governments create winners, becoming leading investors and entrepreneurs (Cimoli et al., 2009; Mazzucato, 2013, 2015; Wade, 2010).

Learning is also at the basis of the infant industry argument. It justifies temporary support and market protection for particular firms or industries until they become capable of producing efficiently and surviving in international markets (Bastable, 1927; Hamilton, 1791; Kemp, 1960; List, 1841; Mill, 1848). The argument in favour of infant industry protection involves several of the conventional arguments discussed above. Taking the developing country perspective, production experience (leading to dynamic economies of scale), especially in manufacturing industries where production size, productivity, and learning are most important, provides significant cost advantages to established foreign firms. Domestic firms with little or no experience are unable to accrue such knowledge and compete with the foreign firms. In this scenario, private firms may be reluctant to establish new industries because of the high risks and high costs associated with entry in these new markets. Domestic markets, therefore, should be protected and domestic firms financially supported in order for them to take advantage of static and dynamic economies.
of scale and compete in regional and international markets. Finally, the realization of positive externalities, such as knowledge spillovers, and externalities arising from the accumulation of human capital through training and learning by doing, represents one of the main justifications for temporary protection of infant industries (Shaffaedin, 2000).

The infant industry argument has been used to justify ISI strategies. Although some empirical evidence showed that such temporary support and protection can help domestic industries successfully develop, it is difficult to determine whether an infant industry intervention is economically efficient, particularly because of the heterogeneity that exists between sectors (Hansen et al., 1990b). It is therefore difficult to predict whether the infant industry is able to survive at a later stage without government support and whether it spreads externalities to other sectors that would balance the initial costs of support and protection.

The infant industry argument and the critique to market failure theory summarized above can be adapted to the specific case of resource-rich economies. In this respect, Latin American structuralists argue that in resource-rich economies, market forces alone will naturally drive structural change towards resource-intensive industries. Specialization based on static comparative advantages would create self-reinforcing patterns, ultimately hindering sustained economic growth and industrialization. In these cases, government intervention can play a crucial role. Selective industrial policies, in particular, can promote industries with more learning opportunities and stronger linkages to the rest of the economy, facilitating diversification and sustained industrialization (Cimoli and Katz, 2003; Ocampo, 2011, 2014).

3.3 Arguments against industrial policy

The main argument against industrial policy revolves around the concept of "government failure", referring to the failures that governments can create when trying to fix market failures. Government failures can arise as side effects of both functional and selective industrial policy, but chances of government failures are higher in the case of selective policies, i.e. when governments interfere more with market functioning. As a consequence, the argument goes, unleashing the "invisible hand" would have a positive impact on economic growth and development. Government failures are also larger and more frequent in developing economies because of a generally lower capacity of governments to design and implement industrial policies.

Why do governments fail? "[G]overnments are not omniscient, selfless, social guardians and corrections are not costless," explains Krueger (1990b: 11). Following this, three factors can be identified that may lead to government failures: information requirements, corruption, and lack of financial resources. All are related to the long-debated issue of state capacity: less capable states are also likely to be less knowledgeable, more corrupt, and less able to mobilize financial resources for policy implementation. We will now discuss these factors one by one.

First, governments need information – for example on market and export trends, technologies and innovation, and firms' obstacles to investments and innovation – in order to design industrial policies. It has been argued that it is not clear why the state should know better than entrepreneurs which industries or technological areas are more promising, and which obstacles entrepreneurs face in their daily operations. Indeed, governments often know less than the private sector (Pack and Saggi, 2006; Rodrik, 2004, 2008). As a solution to this shortcoming, several authors advocate for more systematic cooperation with the private sector, as discussed in Section 2.3.

Corruption is a recurring theme in the debate on industrial policy. One view is that the government's stated goal to maximize public welfare cannot be taken for granted because government officials may use public resources to win electoral support from certain groups, or for personal gains. As Rodrik (2008: 8) puts it, "[s]ince the government is in the business of providing support to firms, it becomes easy for the private sector to demand and extract benefits that distort competition and transfer rents to politically connected entities. Entrepreneurs and businessmen spend their time in the capital asking for favours, rather than looking for ways to expand markets and reduce costs." Corruption, however, can be controlled in a number of ways, including through monitoring and performance criteria (see Section 2.3).

Finally, with respect to the lack of financial resources, Krueger (1990b) points to the high costs of maintaining state-owned enterprises (SOEs) and running investment programmes. Industrial policy also bears other costs, such as the cost of enforcing government controls and correcting government failures. Lin and Treichel (2014) also detail the costs of selective (especially
comparative-advantage-defying) industrial policies: apart from the direct costs associated with SOEs, grants, and subsidies, industrial policy also entails implicit costs due to efficiency losses caused by the monopolies created by the state and inefficient production scales, the resulting market fragmentation, and widespread support to domestic firms. Moreover, low or negative interest rates, overvalued exchange rates, price controls on raw materials, and import tariffs and restrictions distort market prices, increasing the costs of industrial policy. It has also been argued that public initiatives create competition to private initiatives (the “crowding out” argument). According to this argument, public investment crowds out private investment by draining away from the market financial resources that could be better utilized by the private sector (Friedman, 1978; see also Sections 4.3.1 and 4.4.3).

Most governments in the developing world have limited financial resources to guarantee basic social services like health and education and to implement industrial policies. Their fiscal space is limited by low incomes and low administrative capacity to collect taxes. Moreover, globalization poses additional challenges to increasing tax capacity to collect taxes. Moreover, globalization is limited by low incomes and low administrative capacity to implement industrial policies. Their fiscal space social services like health and education and to better utilized by the private sector (Friedman, 1978; see also Sections 4.3.1 and 4.4.3).

The concept of state capacity has attracted enormous attention in the literature. Governments in many developing economies are not able to effectively implement industrial policy, especially when it comes to selective industrial policies. Lall (2000) and Perez and Primi (2009) argue that the complexity of interventions and their selectivity depend on the level of bureaucratic capabilities of the state. Moreover, formulation and implementation of industrial policies require public employees with good technical and administrative skills and with experience in how to best support industries and solve urgent problems. This is what Salazar-Xirinachs et al. (2014) call “technocratic knowledge.” Governments with only basic capabilities should limit themselves to horizontal policies and venture into selective industrial policies only when they accumulate more capabilities. According to Altenburg (2011), state capacity has four dimensions: (a) the capability to define strategic goals and implement them effectively; (b) the capability to establish clear rules of the game for market-based competition; (c) the capability to deliver services effectively; and (d) the capability to avoid political capture. Box 9 describes several indicators that can be used to measure these four dimensions. Although widely used, these indicators have been criticized on methodological and practical grounds (Arndt and Oman, 2006; Ravallion, 2010).

Constraints such as weak state capacity can be overcome and may in fact not be the prime barrier to introducing an industrial policy. To support this view, some scholars point out that the governments of East Asia managed to initiate a successful industrialization process despite weak initial capacity. For example, until the 1960s, bureaucrats from the Republic of Korea were sent to Pakistan to be trained in economic policymaking. State capacity was built over time through long processes of reform and experimentation, a difficult but not impossible task (Amsden, 1989; Chang, 2006, 2009; Evans, 1998; UNCTAD, 2009).

On fiscal space, see UNCTAD (2007b). For the African case, see UNCTAD (2007b).

4 On a comprehensive review of the literature on state capacity, including most common measurements and methodological issues related to empirical studies on state capacity, see Cingolani (2013). On how East Asian states managed to strengthen their capacity, see Cheng et al. (1988) and Evans (1998).

5 On the importance of education for the quality of governance, see Fortunato and Panizza (2015).

| Box 9 |

Measures of state capacity

Research in economics is often based on quantitative analysis. In order to perform such analysis, researchers need statistics (or economic indicators) that measure different dimensions of the economy. One of the main difficulties they face in identifying the impact of institutions on the quality of industrial policymaking and economic development has to do with how to measure the quality of institutions. According to Altenburg (2011), state capacity and good governance can be approximated by the following perception-based indicators:

(a) Strategic capability: Published every two years, the Bertelsmann Transformation Index (BTI) ranks 129 developing and transition countries according to the quality of governance, which is defined in terms of a government’s capability to define strategic goals and implement them effectively. The BTI is an aggregate of two indices: the Status Index, which evaluates the state of political transformation and the state of economic transformation; and the Management Index, which evaluates the ability of policymakers to carry out economic and political reforms. For more information see http://www.bti-project.org.

46 UNCTAD (2009) proposes a pragmatic approach to build state capacity in the least developed countries. This approach is based on finding existing relevant practices and principles that fit the circumstances of the country and implementing a small number of institutional reforms to improve the political and technical capacity of the state.
4 Some cases of industrial policies

The literature on industrial policy has produced interesting case studies documenting which industrial policies have worked and which have not. This section discusses some of the successful (and less successful) experiences with industrial policies. In doing so, it distinguishes four main roles that the state can perform with regard to industrial policy: (a) regulator and enabler; (b) financier; (c) producer and consumer; and (d) innovator. Most of the examples discussed in this section relate to initiatives taken at the central government level. Industrial policies, however, can also be implemented at the sub-national level. The Annex discusses characteristics and examples of sub-national industrial policies.

4.1 The state as regulator and enabler

Johnson (1982) characterizes the regulatory state as one that focuses on providing regulatory frameworks, i.e. sets the rules for business and society. The enabling state is one that facilitates and supports the provision of public services such as health and education (Gilbert, 2005; Taylor, 2008). Being a regulator and enabler means regulating market functioning, for example through competition policy, and enabling business by providing (or supporting the private provision of) basic services such as infrastructure, an educated workforce, and an efficient bureaucracy. Arduous regulatory frameworks are a concern in low-income countries. For example, surveys conducted for the 2015 Technology and Innovation Report (UNCTAD, 2015b) reveal that ill-suited regulatory frameworks are among the most severe obstacles to innovation and entrepreneurship.

Creating an enabling environment is important to attract FDI, as we will see in Section 4.4.2, but also to stimulate local entrepreneurship and innovation. For example, Lo and Wu (2014) described the industrial policy experience of the People’s Republic of China in the last three decades as one where reforms to improve the enabling environment and policies in support of particular industries and firms were both implemented with some degree of success. The enabling function was implemented through policy measures that focused on increasing competition (through privatization of public enterprises), reforms of state banks, labour market reforms, and infrastructure investments. The latter two measures, in particular, were fundamental first to stimulate consumption-led growth, and then investment-led growth. Greater job security and higher wages, and an expansion of (urban) social services, fostered domestic demand by allowing the population to diversify consumption, thereby also spurring capital-intensive industries. Later, infrastructure development led to complementary (private) investments, for example in cars, telephones, and computers, thus contributing to the investment-led growth strategy.

| Box 9 |

<table>
<thead>
<tr>
<th>Measures of state capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b) Capability to establish clear rules: This capability can be approximated by the Global Competitiveness Index and the Doing Business Index. The Global Competitiveness Index, published by the World Economic Forum, ranks countries according to their competitiveness, defined as the set of Institutions, policies (including transparency of government policymaking), and other factors that determine the level of productivity (see https://widgets.weforum.org/global-competitiveness-report-2015). The Doing Business Index, published by the World Bank, ranks countries according to how conducive the regulatory environment is to starting and operating a firm (see http://www.doingbusiness.org/rankings).</td>
</tr>
<tr>
<td>(c) Capability to deliver services effectively: The World Bank has put together a comprehensive database on government effectiveness indicators. These indicators are based on survey data that measure the perceptions of a large number of enterprises, citizens, and expert survey respondents on the “quality of public services, the quality of the civil service and the degree of its independence from political pressures, the quality of policy formulation and implementation, and the credibility of the government’s commitment to such policies” (see www.govindicators.org).</td>
</tr>
<tr>
<td>(d) Capability to avoid political capture: This capability can be approximated by the Corruption Perception Index prepared by Transparency International. The Index ranks 180 countries according to indicators that measure perceptions of governance such as the government’s ability to control corruption, judicial independence, or favouritism in decisions of government officials (see www.transparency.org).</td>
</tr>
</tbody>
</table>

However, one of the problems with survey-based indicators is that opinions about government effectiveness tend to be pro-cyclical, i.e. respondents tend to have positive (negative) opinions during good (bad) economic times.

Authors’ elaboration based on Altenburg (2011).
The example of the Republic of Korea provides a number of policy lessons that could be adapted to other contexts. Cheon (2014) reviews the education and training policies implemented there between 1965 and 1995, the country’s industrialization period. For the sake of our discussion, the most important feature of these policies was that they were truly designed as an industrial policy, meaning that they were intended to stimulate structural transformation. Education and training policies were gradually upgraded throughout the different phases of the country’s industrial strategy. The establishment of universal primary education in the 1960s was followed by an expansion of technical and vocational training in the 1970s aimed at accompanying the heavy and chemical industry drive of the 1970s. In the 1980s, universal middle-school education and expansion of higher education set the stage for the promotion of knowledge-based industries. The expansion of graduate programmes in the 1990s helped promote structural transformation towards high-tech industries. The alignment with other industrial policy measures was further achieved through enrolment and graduate quota systems, through which the government established how many students were allowed in each college based on estimations of industry needs. This policy measure was so successful that by the end of the century, the Republic of Korea had produced among the highest proportions of scientists and engineers in the world.

Ethiopia is currently trying to implement a similar approach: net enrolment in primary education increased from slightly more than 20 per cent in 1990 to over 70 per cent in the mid-2000s. The fast growth of primary education is fueling an increase in secondary enrolment. Technical and vocational training and higher education are also expanding, albeit at a slower pace. Expanding primary education at such a large scale and for such a huge population has been a major challenge: from 1997 to 2013, there was a 190 per cent increase in the number of primary schools in operation, and more than 19,000 primary schools were built between 1992 and 2012. Apart from the benefits strictly related to education, this policy has also created jobs for teachers as well as in construction and in the production of cement and other materials and goods needed to build and furnish schools (Lenhardt et al., 2015). The Ethiopian government has also set enrolment quotas for undergraduate studies according to which 70 per cent of students should enrol in scientific and engineering faculties, and the remaining 30 per cent in humanities and social sciences. While these policies are creating some concerns relating to the quality of education, they are clearly aimed at facilitating Ethiopian structural transformation.

Apart from basic education, technical vocational education and training is important, particularly for the accumulation of skills and upgrading in technologically advanced industries. In Viet Nam, the government has supported technical vocational education and training through the formulation of a strong policy framework to develop a profession-oriented education system and convert most existing universities into professional higher education institutions. The system connects the curricula with the changing needs of the industrial and services sectors, increasingly involving firms’ representatives in the development of curricula and quality standards (ADB, 2014; UNCTAD, 2010c).

4.2 The state as financier

For a very long time, economists have worked under the assumption that the financial sector had little to do with economic growth. Beginning with the work of King and Levine (1993a, 1993b), an extensive literature began to emerge demonstrating that the financial sector actually plays a crucial role in promoting economic growth and development. A functioning financial sector is one that increases the quantity of finance available for enterprise development and ensures the quality of investments through particular institutions that proactively “guide” capital into growth-oriented enterprises based on – and in conjunction with – an existing industrial policy programme.

As discussed in Section 3.2, market failures, and in particular the existence of positive externalities and capital market imperfections, create a discrepancy between the social and the private value of certain investments, leading to under-investment in projects with greater externalities or a high risk profile (e.g. innovative projects). In evaluating projects, private financial institutions do not take into account potential linkages and complementarities between industries, leading to the coordination failures discussed in Section 3.2.2. Externalities and capital market imperfections call for government intervention in the financial sector. In this regard, governments can provide resources and coordination to prioritize investments in industries with the highest potential for externalities and the strongest linkages with the rest of the economy, also guaranteeing minimum efficient scales. SMEs are generally credit-constrained due to the capital market imperfections described in Section 3.2.3. Facilitating SME access to credit helps them expand their
Empirical studies using, for example, the World Bank Enterprise Survey dataset, confirm this. For more details on these studies, see http://www.enterprisesurveys.org/research. To access data, see http://www.enterprisesurveys.org/data.

The European Financing Innovation and Growth (FINNOV) initiative has produced interesting studies on this topic. For more details, see http://www.finnov.ffd.eu. The INET-Levy Institute’s Financing Innovation Project has also been contributing to this debate. Outputs of this project can be found at http://www.levyinstitute.org/inet-levy.

In recent years, counter-cyclical lending has been a priority of many development banks such as the National Bank for Economic and Social Development (BNDES) in Brazil, the China Development Bank, and the European Investment Bank. Given their sizes, these banks could at least in part offset the decline of private investments (UNCTAD, 2015b).

“Late industrializers” refers to economies that, by the end of World War II, had already gained some manufacturing experience. These include the People’s Republic of China, India, Indonesia, the Republic of Korea, Malaysia, Taiwan Province of China, and Thailand in Asia, Argentina, Brazil, Chile, and Mexico in Latin America, and Turkey in the Middle East.

Development banks aim to address these imperfections. During the post-war period, they played a major role in implementing industrial policy in almost all successful structural transformation experiences (Amsden, 2001). The most telling European experience is that of the then Federal Republic of Germany, where the state’s Reconstruction Loan Corporation (Kreditanstalt für Wiederaufbau – KfW) proved valuable in providing finance to back up an industrial-policy-driven recovery (Weiss, 1998). Today, KfW still plays a fundamental counter-cyclical and entrepreneurial role, guaranteeing investments in periods of low private investment and facilitating access to credit for the most innovative projects (Mazzucato and Penna, 2014). Japan, too, used state development banks to underpin an industrial policy based on capital-intensive industries such as motor vehicles, electronics, and shipbuilding, and to build a supportive infrastructure (Johnson, 1982). Amsden (2001) finds that state development banks were behind the industrial development success of virtually all of the “late industrializers”, as well as the early examples of the Republic of Korea and Brazil (see Box 10). In the Republic of Korea, the state controlled the financial sector and established financing institutions – notably the Korea Development Bank (KDB) – to support its industrial policy goals. The KDB operated alongside various other state-owned banks that could also be instructed to support the government’s industrial policy objectives. In contrast to Brazil and the Republic of Korea, other countries like India opted for a different strategy: creating several specialized financial institutions whose mandates were restricted to particular industries such as power or shipping (Chandrasekhar, 2015).

Regional and local state development banks have also undertaken direct financing of industrial development projects. The then Federal Republic of Germany is a useful case in point, thanks to its regional state banks –ländesbanken – that were able to channel funds to SMEs, and particularly to the Mittelstand (medium-sized enterprises).
Measures of state capacity

A textbook example of a large and influential development bank is Brazil’s National Bank for Economic and Social Development (Banco Nacional de Desenvolvimento Econômico e Social – BNDES). Established in 1951, BNDES greatly contributed to the ISI strategy implemented during the post-war period and the EOI strategy implemented since the 1970s. Benefiting from its close relationship with the government and strategies to guarantee an ever-increasing flow of resources, BNDES was able to specialize in the provision of medium- and long-term financing to projects in the industries targeted by the government (i.e. non-ferrous metals, chemicals and petrochemicals, paper, and machinery and equipment).

Lending activities have always been concentrated: In the 1950s, chemicals and petrochemicals accounted for 35.7 per cent of BNDES loans to manufacturing, and the metallurgical industry accounted for 34.5 per cent (Guadagno, 2015a). In 2012, two-fifths of BNDES loans were allocated to its five top borrowers, among them Petrobras, the state-controlled oil company (Chandrasekhar, 2015). Priority was given to projects directed towards acquiring (national) capital goods and equipment, a cornerstone of Brazil’s ISI strategy. To this end, in 1964, BNDES launched the Financing of Machinery and Equipment Programme (Financiamento de máquinas e equipamentos – FINAME). In the years that followed, similar programmes were launched in other NIEs such as the Republic of Korea and Mexico. In the mid-1970s, FINAME loans accounted for 1.5 per cent of Brazilian GDP (Guadagno, 2015a) and by 2013, for more than 3 per cent (Guadagno, 2016).

BNDES succeeded in helping establish a steel industry and make Brazil a major exporter of steel. The automobile industry also greatly benefited from BNDES activities. Thanks to careful oversight of its clients, BNDES was able to ensure that its loan facilities leveraged important technological benefits for the companies and, more importantly, for the local communities or industries in which they operated. One of its most famous successes – the aircraft manufacturer Embraer – was assisted in finding an important niche in the global aircraft sector. Through its offices across Brazil, BNDES also supports the SME sector, providing loans to promising SMEs and, even more importantly, attaching “local content agreements” to loans to big companies.

In the 2000s, BNDES expanded its foreign operations, supporting regional economic integration and investment promotion in neighbouring countries, strengthening links between Brazil and other developing regions (particularly Africa), and supporting the internationalization of Brazilian firms. In 2014, 14 per cent of BNDES loans were in foreign currency (UNCTAD, 2015c). Finally, since the 2007–2008 financial crisis, BNDES has played a counter-cyclical role in the economy, stimulating investments to reverse the economic downturn.

What do the development banks do? Their role in industrial policy programmes is fairly straightforward: they are the financial arm of the state, “mandated to provide credit at terms that render industrial and infrastructure investment viable” (Chandrasekhar, 2015: 23). Development banks are in direct contact with, or are supervised by, ministries or other government bodies, fostering cooperation and ensuring policy coherence. They mobilize resources either domestically or internationally through government funds, official development assistance, bonds, and fiscal revenues. Once resources are mobilized, development banks invest these resources in industrial and infrastructure projects. They design and manage credit lines with subsidized interest rates, evaluating the developmental impact of the projects that seek financing and selecting projects that are more strategic and/or in line with government industrial plans (e.g. projects that aim to increase firms’ competitiveness or projects with a high social value, such as those that help marginalized segments of the society or are carried out in rural areas). Apart from credits, which are by far the most important instrument, development banks also provide equity investments, grants, trade finance, technical support, venture capital, and other financial instruments tailored to the needs of micro and small enterprises, such as mezzanine financing, convertible financing, and subordinated equity.

Development banks also need to monitor the activities of the firms to which they lend, sometimes by nominating directors of their boards.

How can we quantify the size of development banks? One indicator to measure development banks’ activities is the share of development bank loans in GDP. Figure 26 depicts the enormous resources channelled through BNDES and KDB between the 1960s and the 1980s. It also shows the gap in lending between these two banks: KDB invested between 4.5 and 8 per cent of GDP of the Republic of Korea; BNDES invested between 0.9 and 3.4 of Brazilian GDP. To put these numbers in

Box 10

Industrial policy: a theoretical and practical framework to analyse and apply industrial policy

2

module
In the mid-1970s, the government of the Republic of Korea spent 2.2 per cent of its GNP on education, and the Brazilian government 3.6 per cent. More recently, the industrial success of the People’s Republic of China has also been underpinned by a huge development bank, the China Development Bank.

Box 11

The role of the China Development Bank in China’s “going out” strategy

Established in 1994, the China Development Bank (CDB) initially contributed to the Chinese urbanization project, mobilizing funds and channelling them into infrastructure and housing. This was mainly achieved by lending to local government financing vehicles, the instruments through which provincial governments could borrow in order to finance their infrastructure projects. These loans accounted for roughly half of total CDB loans (Sanderson and Forsythe, 2013). Later, the bank fostered the expansion of important manufacturing industries such as telecommunications, and wind and solar energy, supporting the government’s “going out” strategy to help Chinese firms expand to foreign markets. In this area, the bulk of CDB activities concerned vendor financing credits and loans for oil. The former consist of loans provided to credit-constrained international customers of Chinese firms. The CDB intervenes by providing credits to these international buyers. These credits allow the buyer to pay the Chinese firm while the Chinese firm gains a new market. Some of these deals might also have the features of loans for oil, meaning that buyers can pay back their loans to the CDB by supplying oil or other commodities to local Chinese governments or firms.

The bank also owns an equity investment fund, the China-Africa Development Fund (CADF), which is dedicated to Chinese investments in Africa, where it provides equity and quasi-equity investments and technical support to firms starting up operations. Investments by the fund mainly involve infrastructure, but also agriculture, manufacturing, and resource extraction. In all these fields, the CADF can benefit from the CDB’s long-standing experience in evaluating projects, assisting clients throughout the different phases of their projects, and the contacts that the bank has developed. In 2014, the foreign currency loans provided by the CDB totalled US$267 billion, equalling roughly 22 per cent of total loans by the bank (UNCTAD, 2015c).

Today the CDB is huge: in 2011, its assets were estimated at US$991 billion, more than three times those of BNDES in Brazil, nine times more than KDB in the Republic of Korea, and almost double those of the World Bank (Sanderson and Forsythe, 2013). In 2012, the CDB was the fifth largest lender in the People’s Republic of China, providing roughly 6 per cent of total credit in the economy and lending amounts close to 12 per cent of Chinese GDP (Guadagno, 2016). An example of its operations is the recent “Silk Road” strategy which involved large infrastructure investments in Asia.

Source: Authors’ elaboration based on Chandrasekhar (2015), Guadagno (2016), Sanderson and Forsythe (2013), and UNCTAD (2015c).
What is the size of the loan portfolio of the most active development banks today? Guadagno (2016) analyses the experience of eight influential development banks: the Hungarian Development Bank (MFB), Brazil’s BNDES, China’s CDB, the South African Industrial Development Corporation (IDC), the Industrial Development Bank of Turkey (TSKB), the Small Industries Development Bank of India (SIDBI), the Viet Nam Development Bank (VDB), and the Development Bank of Ethiopia (DBE). Figure 27 shows the share of their loans in GDP in 2012. These banks spent between 0.1 and 11.7 per cent of their countries’ GDP on loans. Despite the lower incomes of Viet Nam and Ethiopia, their development banks are very active, devoting (mostly industrial) credits amounting to 7.5 and 1.7 per cent, respectively, of their countries’ GDP. The figure also shows how large the loan portfolios of BNDES and CDB are, representing 10.4 of Brazilian GDP and 11.7 per cent of Chinese GDP, respectively. As a benchmark, in 2012, the Chinese and Brazilian governments spent 3 and 4.5 per cent of their respective GDPs on public health. 76

Guadagno (2016) also shows that these development banks address a market failure in the economy because they provide a type of “patient capital” (i.e. medium- and long-term credits) that private banks only provide in rationed quantities. Patient capital allows firms to undertake long-term industrial projects, for example to expand, modernize, or diversify production. Figure 28 shows average maturities of loans by BNDES and the ten major banks operating in Brazil in 2012. The vast majority of loans by those Brazilian banks have a maturity of less than three years; the opposite occurs in BNDES, with 75 per cent of the loans having a maturity of more than three years. If we look at loans with the longest maturity (more than 15 years), BNDES outperforms the other major banks with 9.2 per cent against 1.9 per cent of these loans in its portfolio.
4.2.2 Support for small and medium-sized enterprises

From the 1940s onward, a number of economists claimed that large industrial corporations are not the only meaningful source of innovation as SMEs can also contribute to it (Acs and Audretsch, 1990; Galbraith, 1971; Schumpeter, 1942). SMEs can be of two types: under-sized, low-productivity SMEs, which Nightingale and Coad (2014) call “muppets”, or early-stage and highly innovative SMEs, which they call “gazelles”. The latter can have an advantage over larger enterprises thanks to their agile organization, with less bureaucratic structures that allow for creativity and innovation. New SMEs are also blessed by their lack of prior history: since they are not locked into any specific product or process from which they generate profits, they are keener to adopt or develop new breakthrough innovations. A particular type of SMEs is the spin-off, a small entrepreneurial firm created by managers or engineers leaving large corporations, universities, or research institutes. Spin-offs were given huge retrospective justification in the United States on account of the growth and development impetus they provided in several locations, notably in the Silicon Valley in California.

In advanced countries, entry of new industrial SMEs has proved to be crucial to the success of industrial policy. Storey (1994) showed that it was only a few new SMEs that gave impetus to structural change through technology upgrading and innovation. The key for industrial policymakers is to try to identify “gazelles”, the innovative SMEs described above, and focus resources on helping them improve and expand. The alternative to this – a “scatter-gun” approach to new entry – would involve the entry of large numbers of enterprises, the majority of which would exit the market after a few years. Nightingale and Coad (2014:136) point out that “[a]cross the board policy enthusiasm for entrepreneurship can be found to be frustrating” and that “the government is tackling one of key determinants of the missing-middle phenomenon facing the country.” Their recommendation, very much following Storey (1994), is that industrial policy should focus on supporting not muppets, but gazelles, as they have the highest potential to make the largest impact on the economy. This impact could be achieved via generation and/or deployment of key technologies, ability to innovate, fostering of export potential, and the use of highly-skilled labour.

While the identification of such high-impact enterprises is not a perfect science by any means, the success of many enterprise development programmes, and of the private venture capital industry as well, would suggest that it is indeed possible to identify the most likely high-impact enterprises and run with them. Moreover, even in cases when such high-impact enterprises close down quite quickly after launch, the possibility exists to recycle and recombine the capital equipment, knowledge, skilled labour, and other forms of acquired value through and into other local enterprises. For example, Taiwan Province of China relied on a very determined industrial policy programme aimed at supporting new high-tech SMEs (Lall, 1996; Wade, 1990). After 1960, numerous technology development organizations were founded to support these SMEs, including science parks (notably the Hsinchu Science Park, whose tenants in 1995 accounted for 4.2 per cent of output of Taiwan Province of China and 175 per cent of total R&D spending; see Amsden, 2001). Other organizations such as the public Industrial Technology Research Institute (ITRI) cooperated extensively with local SMEs, spawning off a number of them, most notably in electronics (see also Section 4.4.1). Early-stage SMEs also received support in order to help them achieve minimum efficient scales with state orders and assisted local purchases and other discount schemes (Wade, 1990).

In developing economies, SMEs are predominantly muppets. Despite their low productivity and often informal nature, these firms generally constitute the bulk of industrial production in such countries. This also means that they often represent the only source of jobs and incomes for large portions of the population, especially in rural areas. Due to this, many governments have implemented policies to support their growth. The Ethiopian government, for example, has implemented a programme to support micro and small enterprises by providing them with financial support, thus contributing to their formalization and the consequent reduction of informal employment. In this way, the government is tackling one of key determinants of the missing-middle phenomenon facing the country (see Box 12 for a short discussion), namely the lack of finance. According to some estimates (World Bank, 2015), the share of SME lending in overall lending in Ethiopia is among the lowest in sub-Saharan Africa, accounting for only 7 per cent of total lending. This is mainly due to the particularly high collateral rates required to obtain a loan. In this regard, the partial credit guarantee scheme offered by the government further helps SMEs access credit markets (Lenhardt et al., 2015; World Bank, 2015).
The “missing middle” phenomenon

The expression “missing middle” refers to a crucial characteristic of productive structures of many African economies. These structures are typically composed of a myriad of micro and small enterprises, with only a few large enterprises and far fewer medium-sized enterprises. Large firms are generally capital-intensive, resource-based, import-dependent, or assembly-oriented, and are often affiliates of foreign firms or SOEs. Micro and small firms employ considerable portions of the workforce, but have low productivity levels, use basic technologies, and are generally informal. This creates a productivity divide between large and small firms, contributing to the structural heterogeneity described in Module 1 of this teaching material. Empirical research in this area has shown that the main obstacles to firms’ growth in these economies include lack of finance, family-dominated ownership structures, and entrepreneurs’ preferences to remain small and avoid formalization (Iacovone et al., 2014; UNCTAD, 2001). Apart from facilitating access to finance, governments can initiate the creation of linkages and networks between more and less productive firms (Kauffmann, 2005; UNCTAD, 2006a).

Source: Authors.

4.2.3 State venture capital and loan funds

At higher income levels, state venture capital funds have proved to be important contributors to industrial policy programmes, supporting innovations that could be commercialized by local companies. For example, Ireland’s development agency, “Enterprise Ireland”, has been a pioneer in using its own venture capital fund to support export-oriented innovative enterprises. The success of Enterprise Ireland’s equity stakes in a number of high-technology start-ups has been shown to have provided a major fillip to local industrial development and plans to reorient Ireland’s economy away from traditional industries (Barry and Topa, 2006). In Israel, the Office of the Chief Scientist financed investments in many new technologies and created an industrial network that is said to be one of the world’s best examples (Breznitz and Ornston, 2013).

Another country that very creatively used the state venture capital model is Finland. A low-technology-based economy until quite recently, Finland has enjoyed remarkable success thanks to a range of industrial policy programmes, and especially thanks to a number of public venture capital funds. Two such funds in particular have played a decisive role in facilitating innovation-led structural transformation. The first, and by some accounts the most dynamic, is SITRA, the Finnish National Fund for Research and Development. Established in 1967 as a state investment fund that operated as part of the Bank of Finland, SITRA was tasked with promoting innovation in SMEs. By taking equity stakes in early-stage innovative SMEs, and by supporting a range of other venture capital funds, SITRA was able to leverage large amounts of capital into innovation industries. A noted contribution was SITRA’s support to develop a local high-tech SME network that Nokia was later to rely heavily upon for highly specific inputs and R&D activity in relation to its mobile phone operations (Breznitz and Ornston, 2013).

The other institution of note here is Finland’s development agency, TEKES, the Finnish Funding Agency for Technology and Innovation. TEKES also provides large sums of capital to underpin early-stage innovative SMEs. By 2000, it enjoyed a budget of roughly 400 million euros to support R&D activities and in general the drive to establish a knowledge-based economy. TEKES-supported SMEs could also link into the growing capacity of Nokia, not least because TEKES was also responsible for co-financing the software protocol for the GSM digital mobile communications standard that launched Nokia on to the world stage.

4.3 The state as producer and consumer

The role of the state as producer is probably the most controversial in the literature. States have often decided to directly produce goods or technologies that they deem strategic for the industrial development of their economies. In certain industries, minimum efficient scales of production require firms to make huge fixed capital investments, with all the risks associated with such investments. Especially if the state considers an industry particularly strategic, it might see it as beneficial to invest in it by setting up public enterprises (SOEs). The state can also act as a consumer through public procurement. In this area, state intervention can be justified on the grounds of externalities: by procuring goods characterized by high externalities (e.g. infrastructure, education and health, science and innovation), governments can re-establish the socially desirable rate of investment in those areas. Public procurement can also be justified by the promotion of strategic entry, for example in the case of defence procurement. We will now discuss these two policy instruments one by one.
4.3.1 State-owned enterprises

SOEs are one of the industrial policy instruments that have generated opposing views in the literature. Some observers, mostly in the neoliberal tradition, have criticized the use of SOEs because of their high costs, which aggravate the fiscal deficits of developing countries, and their inefficiency. The main cause of such inefficiency, it was argued, is that public enterprises have no clear residual claimant, meaning that no one has a clear interest in the firm generating profits (as no one can claim benefits at the end of operations). In the absence of a market for the assets of public firms, managers are not threatened by external takeovers. This lack of competition translates into a lack of self-discipline, which ultimately reduces incentives to be efficient (Alchian and Demsetz, 1972; Grossman and Hart, 1986).

Another argument against public enterprises is that they crowd out private investments, i.e. they subtract excessive portions of credit to private entrepreneurs who would perform better than governments in running businesses. Indeed, in operating SOEs, government officials might also be subject to conflicting objectives, leading to corruption and favouritism. Moreover, it was argued that SOEs are inefficient because they follow national interests, rather than pursue profit maximization (Bennedsen, 2000; Buchanan et al., 1980; Niskanen, 1971; Shleifer and Vishny, 1994; see also Floyd, 1984; Shleifer, 1998; Shirley, 1999; and World Bank, 1995).

Others noted that in some cases SOEs have acted as engines of technology development and transfer. Empirical evidence shows that while at times SOEs have aggravated public deficits, becoming a burden to the state, in other cases they have been at the vanguard of structural transformation and industrial upgrading (Amsden, 2007). SOEs were also crucial as they “strengthened professional management, invested in R&D, and became a training ground for technical staff and entrepreneurs who later entered private industry” (Amsden, 2001: 214). Europe is not unfamiliar with the role that SOEs can play, especially if their activities are linked to major industrial development projects (see Box 13 for an example). In post-war Austria and France, for example, SOEs took the lead in transferring technologies and introducing innovations into heavy industries. In the United Kingdom in the same period, under-investing private enterprises were displaced by public ownership in order to raise efficiency and increase R&D and investments in state-of-the-art technologies. Chang (1994) reports that while the Republic of Korea’s industrial policy experience was largely forged in cooperation with privately owned enterprises (chaebols), whenever private enterprises were not up to the task, the state regularly set up a SOE (Chang, 1994; see also Chang, 2002; Chang and Grabel, 2004). This was, for instance, the case of POSCO, the Pohang Iron and Steel Company established in 1968 (Amsden, 1989; Sohal and Ferme, 1996). Other successful experiences are PEMEX, Petrobras, and the China Petroleum Company, the oil companies of Mexico, Brazil, and China, respectively, as well as Embraer in Brazil (Goldstein, 2002). Spillovers from technological and human capital investments undertaken by SOEs greatly benefited local firms by providing them with a trained workforce, professional managers, and knowledge in the field of engineering and equipment for petrochemical plants (Amsden, 2001). At lower income levels in India, for example, the government established two SOEs, Hindustan Antibiotics Limited and Indian Drugs and Pharmaceuticals Limited, in order to create production capacity in the pharmaceutical industry (Guadagno, 2015b). In Ethiopia, during the rule of the Provisional Military Administrative Council (1974–1991), SOEs developed certain technologies that were later adopted and further advanced by private firms (Vrolijk, forthcoming).

State ownership has also been a cornerstone of Chinese industrial policy: while the value-added share accounted for by SOEs decreased as a result of the reforms of the 1990s, it has steadily increased since the 2000s, reaching 38 per cent in 2010 (Lo and Wu, 2014). Most Chinese SOEs are large-scale and capital-intensive, reflecting the strategic nature of state investments. An illustrative example of the role of Chinese SOEs comes from the high-speed railway industry, where “main vehicles for the development of frontier technology are the SOEs” (Lo and Wu, 2014: 320). In this industry, the Chinese government realized that it could not rely on transnational corporations (TNCs) to develop breakthrough innovations. Although their presence in the country had facilitated absorption and accumulation of knowledge and skills by local firms, TNCs did not have enough incentives to start innovative projects in the country. In a matter of a few years, SOEs were able to import and absorb the technologies used by the TNCs and improve them further, which led in 2009 to the development of an entirely domestically produced train that could reach the speed of 300 km/hour.

Steel, oil, and aerospace are all large-scale capital-intensive industries where economies of scale and minimum efficient scales are paramount.
SOEs can also play an important role in fulfilling an industrial policy mandate at the regional or local level, as shown in the case of Medellín, Colombia (Box 14). In particular, the willingness and ability of an enterprise to support a local network of subcontracting SMEs is a valuable asset for the community, but one that has become more difficult to achieve due to globalization and GVCs. Privately-owned enterprises are far more likely to abandon the local community and local subcontracting chains than are local public enterprises, which generally imbibe strategic goals other than simply profit maximization (McDonald and Ruiters, 2012).

Despite the evidence of these successes, history is replete with cases of inefficient SOEs. Some cases can help to illustrate the mistakes that government can make in establishing and running SOEs. Inefficiently managed SOEs can lead to capacity underutilization and financial losses, culminating in bankruptcy, as was the case of many African SOEs (e.g. the Tanzanian Morogoro shoe factory, which was created to boost exports but never operated at more than 4 per cent of its installed capacity; see Easterly, 2001). Lack of managerial skills can delay production and create inefficiencies in daily operations, as happened in the early history of the Altos Hornos, the steel mill established in Mexico in the early 1940s (Amsden, 2001). Conflicting interests can create conflicting incentives: for example, in the case of a sugar milling monopoly established in Bangladesh, the government required farmers to sell sugar cane at below-market prices. This induced farmers to plant other crops, creating a shortage of sugar cane and a consequent increase in sugar prices (World Bank, 1995).

4.3.2 Public procurement

Through public procurement, governments and state agencies procure goods and services for their own use, guaranteeing sufficient demand. By setting standards and technical characteristics that the procured good must have, governments can also spur technological change and act as knowledgeable consumers with which firms can interact and cooperate. Clearly, this policy instru-
more recent experiments with procurement come from the Republic of Korea and Malaysia. In the former case, public procurement has been used since the 1970s to guarantee stable demand for firms’ products and a source of revenue for them. In the latter case, the government required recipients of government support to source a portion of their production domestically, therefore imposing local content requirements (Fe-lipe and Rhee, 2015). Local, or domestic, content requirements have often been linked to public procurement agreements, but today their use has been restricted by WTO regulations on the grounds of competition concerns (see Section 5.2.3 for more details). Box 15 provides an example of how public procurement can be used to increase domestic production.

Box 15

The use of offset clauses in defence public procurement: The case of India

In order to spur Indian exports, the Indian government introduced an offset clause in 2005 in defence public procurement. Offset clauses are common in defence procurement, where they work as a compensatory requirement by which foreign suppliers must offset the cost of procurement by supporting the domestic economy. These clauses are generally set as percentages of the procurement contract. In the Indian law, for procurement above Rs 3 billion, the offset policy requires foreign firms to reinvest at least 30 per cent of their procurement in Indian industries. This reinvestment can take different forms: direct purchases of domestic goods or services (formally treated as export orders); equity investments in joint ventures with Indian enterprises; technology transfer agreements; and/or provision of equipment to Indian firms or government institutions. Thanks to the offset clause, whenever a foreign supplier offsets its procurement with the Indian government by purchasing inputs, Intermediate goods, or services from Indian companies, these purchases qualify as exports, driving up domestic production. Given the high capital intensity of the aerospace industry, public procurement contracts are generally onerous, thereby implying high reinvestment amounts by foreign vendors.

Source: Authors’ elaboration based on Guadagno (2015b).

4.4 The state as innovator

Innovation is an important determinant of industrialization (see Module 1). Government intervention to spur innovation can be justified on two grounds. First, due to information asymmetries in the capital market and the highly uncertain nature of innovative activities, lenders find it difficult to evaluate the quality of innovative projects and consequently deny credit to such projects or make it more expensive. Second, knowledge production and innovation are characterized by significant externalities in the form of knowledge spillovers and linkages, leading to underinvestment in these areas.

Empirical evidence has demonstrated that public policies can play a fundamental catalytic role in advancing science and technology, and in spurring firms’ R&D investments through STI policies (see Box 16 for a discussion of the differences between these policies). In particular, through science policies governments can create a knowledge base on which firms can build to produce innovative products and services. Technology policies address generic technologies, such as ICT, and stimulate the development of technological capabilities, for example through technology transfer. As the experience of East Asian economies showed, however, these policies need to be complemented by innovation policies, i.e. policies that stimulate R&D investments within firms.

This section focuses on several STI policy instruments that have been prominently featured in the industrial experiences of advanced economies, NICs, and middle-income countries. Few low-income countries have experimented with STI policies, mainly due to the high costs of these policy instruments and their requirements in terms of skilled labour, human development, and state capacity. Box 20 at the end of Section 4 provides some examples of STI policies that have been undertaken by low-income countries. In the domain of science policies, this section discusses the role of public research programmes and government-supported research institutes. These proved to be crucial ingredients of the in-
nnovation systems of various successful countries. Publicly available knowledge can create a knowledge base and form a pool of experts who can benefit private firms through spin-offs, consortia, and other forms of cooperation. In the domain of technology policies, FDI attraction is the mechanism of technology transfer that has received most of the attention in the literature. In the domain of innovation policies, R&D subsidies are gaining importance in countries’ development and innovation strategies.

Box 16

Defining science, technology, and innovation policy

This box outlines the differences between STI policies (see Table 16.1). In doing so, it adopts a systemic approach to innovation, making a broad range of actors responsible for the innovative performance of the economy (see Section 3.1.6 in the main text). Following this approach, the instruments of STI policy include measures to stimulate the supply and demand side of technology and innovation, strengthen the performance of the actors of the innovation system and the relationships among them, and address framework conditions for innovation.

<table>
<thead>
<tr>
<th>Focus</th>
<th>Examples of instruments used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science policy</td>
<td>Production of (basic) scientific knowledge</td>
</tr>
<tr>
<td>Technology policy</td>
<td>Advancement and commercialization of technical knowledge</td>
</tr>
<tr>
<td>Innovation policy</td>
<td>Strengthening the innovative performance of domestic firms</td>
</tr>
</tbody>
</table>

Source: Authors.

Setting the boundaries of public policies is never an easy task because policy areas can overlap and policy instruments rarely serve only one objective. For example, investing in an education policy instrument such as technical vocational education and training can also be considered a technology policy instrument because it strengthens absorptive capacity, equipping the labour force with technical skills and capabilities that can allow workers to move to more productive industries and economic activities. Similarly, imposing import licenses, a trade policy instrument, can influence the innovative performance of an economy because it can foster domestic technology development. Innovation also requires considerable financial resources, as R&D is generally costly and the uncertain nature of the innovation process requires firms to go through processes of learning and trial and error. Given this, investment policy instruments such as loans and venture capital are key to spur innovation.

Source: Authors’ elaboration based on Guadagno (2015a), Lundvall and Borras (2006), and UNCTAD (2007).

4.4.1 Public research programmes and government-supported research institutes

In the domain of science policies, public research programmes, especially in the United States, have contributed to great scientific and technological breakthroughs such as the Internet and personal computers. The US Defense Advanced Research Projects Agency initiated and managed most of these programmes, providing them financing and establishing research networks around them. These programmes were exploratory and not purely scientific in nature, allowing firms to benefit from this research, learn from it, and finally commercialize products that originated there. Abundant literature has documented these successes, detailing government policies and amounts disbursed (Langlois and Mowery, 1996; Levin, 1982; Mowery and Rosenberg, 1993; Mowery and Nelson, 1999; and more recently, Block and Keller, 2011; Mazzucato, 2013; Wade, 2014).

Most countries in the world, however, cannot equal the financial and human resources of the United States, although some public research programmes have been or are in the process of becoming quite successful. Most developing countries have neither a private sector capable of absorbing publicly funded research nor an innovation system that can generate the sort of innovations produced by advanced economies. So

80 See, for example, the Technology Development Programmes in Taiwan Province of China (Hsu and Chiang, 2009).
what can governments in developing countries do? At first, firms need to accumulate some prior knowledge that can help them understand, absorb, and use the knowledge produced outside the firm (whether in public research institutes or TNCs). In other words, firms need to acquire absorptive capacity (Cohen and Levinthal, 1990). This requires firms to employ skilled and knowledgeable engineers and establish their own in-house R&D centres. In countries with limited financial and human resources, however, firms might find it difficult to set up an in-house R&D centre from scratch. Public policies can therefore facilitate this process by creating a knowledge base that firms can tap into. Government research institutes can be established, and local firms can be invited to cooperate with them to facilitate knowledge diffusion and mutual learning.

Government-supported research institutes (GRIs) have been set up in various countries during the post-war period. They are either dedicated to specific industries/technological areas or have a broad scientific focus. In the former case, research is more applied, leading to technologies that are closer to the commercialization phase. This increases the potential for collaboration with the private sector and makes GRIs a fundamental actor in the government’s structural transformation programme, venturing into new industries and facilitating firms’ entry by reducing their costs and risks and providing guidance on the promising technological trajectories for innovation in those industries. In the latter case, research is more basic, i.e. less applied and far from the commercialization phase. Less intense linkages with the productive sector reduce the scope for knowledge spillovers, mutual learning, and technology transfer.

The experience of ITRI in Taiwan Province of China is particularly instructive in this regard (see Box 17), although there have been GRIs as well in other industrializing countries. The Korean Institute for Science and Technology in the Republic of Korea, established in 1966, accomplished the same task as ITRI (Kim, 1992). In Brazil, the Aerospace Technology Centre (Centro Tecnológico Aeronáutico) was established in 1945 as an umbrella organization for aeronautical research modeled on the Massachusetts Institute of Technology in the United States. Over time, it became probably the most advanced research institution in industrializing countries (Dahlman and Frischtak, 1992). Its research activities were so advanced that Embraer took over some of its research projects, confirming how important GRIs can be for knowledge creation and accumulation of capabilities for local firms (Goldstein, 2002). Even at lower income levels, there are examples of GRIs contributing to successful catch-up by some industries. In the Indian aerospace industry, for example, a number of research institutes, located mainly in the Bangalore district, advanced scientific knowledge and created a pool of skilled workers who could be later employed by domestic and foreign firms (Mani, 2010).

R&D consortia involving GRIs, domestic firms, and even foreign firms can be an effective means of learning for firms with incipient in-house R&D centers. East Asian governments extensively used this learning model to develop new technologies, for example in the telecommunications equipment and computer industry. These policies helped to turn domestic firms into global market leaders. When domestic firms have accumulated the necessary prior knowledge to be able to generate novel knowledge and come up with new products and processes, governments can stimulate their efforts through financial and fiscal incentives for R&D (Cheon, 2014; Lee, 2015; Lee and Lim, 2001; Mathews, 2002).
Government-supported research institutes: The experience of the Industrial Technology Research Institute in Taiwan Province of China

One of the most successful cases of GRIs is certainly ITRI in Taiwan Province of China. It was established in 1973 and located in the Hsinchu Science Park. According to Hsu and Chiang (2001: 127), “ITRI is responsible for conducting two types of technical work. It firstly develops innovative technologies for the establishment of new high-tech industries and then it integrates relevant technologies into existing industries to improve their manufacturing processes and quality.” In other words, ITRI explores promising technological areas and experiments with technologies that have a commercial potential; this means that ITRI itself develops and tests prototypes of potential new products.

How did ITRI achieve such an impact on the innovation system of Taiwan Province of China? As discussed in Section 3.1.6 of the main text, innovation is a systemic endeavour of a number of interconnected actors in the economy. The stronger the linkages between these actors, the faster the knowledge diffusion and the greater the innovation rate of the economy. Subordinated to the Ministry of Economic Affairs, which determines its research focus, ITRI is an integral part of the complex system of innovation of Taiwan Province of China, a system composed of a large number of institutions and governmental bodies (Hou and Gee, 1993). ITRI was, and still is, well embedded in the institutional STI system and connected to the productive side of the economy. It is located inside the most dynamic science park on the island. The co-location of ITRI with many other research institutes and high-tech companies facilitated opportunities of knowledge-sharing and learning. ITRI also licenses its technologies to local firms, offering better conditions than foreign firms. As mentioned in Section 4.4.2 of the main text, ITRI spun off a number of high-tech firms that later became successful global players (e.g. the Taiwan Semiconductor Manufacturing Company, the world’s largest semiconductor foundry). It has been estimated that since its foundation, ITRI has spun off 162 firms and contributed to the creation of many others.

Source: Authors.

4.4.2 Attracting foreign direct investment

FDI can be a channel for technology transfer, and is therefore particularly relevant for low-income economies, where innovation efforts are geared towards absorption of foreign knowledge and technologies.\(^1\) The role of FDI in economic growth and development has been an important topic of discussion in the literature.\(^2\) It can be argued that the inflow of foreign investment should automatically benefit the host economy, as FDI can relax financing constraints, increase competition, bring in technology, and create new jobs, investment opportunities, and knowledge spillovers (Borensztein et al., 1998; Lipsey, 2002; Markusen and Venables, 1999). Yet, it can also be argued that these benefits depend on the size and type of FDI (see Box 18), its mode of entry, the characteristics of the host country, and how much the government is able and willing to direct such inflows (Lall, 2000; Moran, 2011, 2015; UNCTAD, 1999, 2000, 2006c, 2006d; Wade, 2010). The impact of FDI on host economies might even be negative, for example by crowding out investment opportunities for local entrepreneurs (Kumar, 1996).

\(^1\) The literature has identified several mechanisms for technology transfer: FDI, licensing, consultancy, and technical agreements, trade in capital goods, joint ventures, subcontracting, exports, labour mobility, and technical developmental assistance (UNCTAD, 1999).

Types of foreign direct investment

The literature identifies several types of FDI:

Technology-leveraging FDI: Firms that undertake technology-leveraging outward FDI seek to acquire foreign technology and knowledge on new processes and products by setting up research and design divisions in technologically advanced economies.

Resource-seeking FDI aims to exploit the host country’s comparative advantage in natural resources (such as minerals, oil, raw material, agricultural products, and other commodities), and low-skilled or specialized labour.

Market-seeking FDI aims to gain access to local markets in response to actual or future demand for the firm’s products in such markets. These firms thus target markets that are situated outside their home market and which may be profitable because of the size of the demand or because it is more profitable to produce in the local market rather than producing in the home market and exporting (e.g. due to trade barriers in host country).

Efficiency-seeking FDI occurs in response to low costs of production, specialization, economies of scale and scope, and other sources of cost advantages offered by the host economy. Some authors have argued that the definitions of resource-seeking and efficiency-seeking FDI overlap when it comes to cheap labour as the main driver of foreign investment.

Strategic asset-seeking FDI: Firms undertake strategic asset-seeking FDI in order to access strategic assets (e.g. technology, brands, and capabilities) that allow them to achieve their long-term strategic goals such as maintaining or creating competitiveness. Strategic asset-seeking investments often take place through mergers and acquisitions.

Some types of FDI, such as resource-seeking and market-seeking FDI, generate limited benefits for the host economy and can even hurt it by (a) displacing local producers who cannot compete with foreign firms that usually have access to superior technology, financing, and better-skilled labour; (b) reinforcing structural heterogeneity by establishing enclave sectors; and (c) constraining long-term economic growth by pushing the economy to specialize in industries such as oil and mining. Modes of entry can also affect the developmental impact of FDI. Greenfield investments can create additional employment and investment, and mergers and acquisitions have high knowledge transfer potential. Finally, the developmental impact of FDI also depends on the characteristics of the host economy, especially in terms of the quality of infrastructure, institutions, education, absorptive capacity, and productive structures. The existence of a domestic productive sector offers foreign firms a network of potential local suppliers of inputs and components, multiplying opportunities for technology transfer and knowledge spillovers.

Public policies have a role to play in shaping these factors. Governments can create an enabling environment for FDI by reducing restrictions, controls, and bureaucratic procedures. FDI has also been encouraged by opening privatization programmes and public procurement to foreign investors. Many governments set up SEZs, EPZs, and free tax zones with efficient infrastructure and generous tax exemptions. These initiatives can be accompanied by promotional initiatives to disseminate information on the incentives and promote a positive international image of the country. In this regard, attracting a renowned international firm can be an effective strategy to attract more FDI, as this can work as a signal for other firms. This is what happened in Costa Rica, for example, when Intel invested in the country. Some countries have also granted foreign investors’ market protection from imports and from the pressure of market entry, but this policy has not always worked.

FDI has played an important role in the industrialization process of East Asian economies. Japanese firms “recycled” the comparative advantage in less advanced countries in the region, giving rise to the “flying geese” paradigm. As the literature shows, Japanese industrial policies to restructure “sunset” industries (i.e. declining industries that were no longer in line with the country’s dynamic comparative advantage) encouraged Japanese producers to move to nearby economies with a comparative advantage in those industries. As a consequence, Japan became a major foreign investor in the region, benefiting the Republic of Korea, Taiwan Province of China, Indonesia, Singapore, and Hong Kong (China). Following the flying geese paradigm, FDI was...
Industrial policy: a theoretical and practical framework to analyse and apply industrial policy

Module

In second-tier NIEs and elsewhere, public policies and Taiwan Province of China were not replicated export sophistication in the Republic of Korea transfer, strengthened domestic capabilities and structural and technological change. The positive of FDI in itself is not enough to initiate and spur This empirical evidence suggests that attraction and the potential for knowledge spillovers and learning opportunities for local workers and firms (Paus, 2014).

Box 19

Transnational-corporation-dependent industrialization strategies: The cases of the Philippines, Indonesia, and Costa Rica

In the Philippines, the establishment of an EPZ with modern infrastructure and preferential tax rates, combined with favourable domestic conditions such as low wages and an educated, technically capable, and English-speaking workforce, managed to attract FDI, especially in electronics. FDI contributed to employment growth and diversification away from resource-based industries. However, these EPZs became enclaves with limited linkages with domestic economic activities, restricting opportunities for knowledge and technology transfer. Moreover, as complementary STI policies were not adequately implemented, technological upgrading was difficult, and the activities performed by TNCs generally had low value added. A similar situation occurred in the Indonesian automotive industry, which attracted many (especially Japanese) market leaders, but could not effectively link them with local SMEs. Local content requirements imposed by the government on foreign firms in exchange for market protection were rarely adhered to, as domestic firms could only produce low-tech components, and limited incentives and policies existed to upgrade their capabilities. To address these issues, the government has recently set up a government-supported research institute to foster knowledge creation in the industry (Guadagno, 2015b).

Costa Rica can also be listed as one of the most successful cases of FDI attraction, culminating with the 1996 investment by Intel. The FDI received by Costa Rica was efficiency-seeking and aimed at benefiting from the country’s resources, such as its geographical position, educated workforce, political stability, and the favourable fiscal regime offered by the government. FDI resulted in substantial export growth and diversification of exports, mainly towards electronics and electrical equipment. Industrial upgrading, however, required the government and local firms to undertake complementary investments in order to keep up with the infrastructural, educational, and innovation requirements of foreign investors. As a consequence, activities performed by TNCs remained limited to the lowest end of the value-adding process of the value chain. Therefore, although Costa Rica managed to diversify its export structure towards high-tech industries, the activities performed in Costa Rica had little technological and knowledge content, requiring minimum skills and limiting the potential for knowledge spillovers and learning opportunities for local workers and firms (Paus, 2014).

Source: Authors’ elaboration based on Guadagno (2015b) and Paus (2014).

This empirical evidence suggests that attraction of FDI in itself is not enough to initiate and spur structural and technological change. The positive dynamics from FDI that, through technological transfer, strengthened domestic capabilities and export sophistication in the Republic of Korea and Taiwan Province of China were not replicated in second-tier NIEs and elsewhere. Public policies in Northeast Asian economies played a huge role in maximizing benefits from FDI. So, what can governments do in this regard? Through selective seclusion (i.e. the selective opening of industries and economic activities to foreign investment) and complementary investments in education and infrastructure, govern-
ments can attract more strategic FDI and retain it when foreign investors find cheaper locations. Governments can also help firms negotiate with TNCs, for example for knowledge and technology transfer and local employment. In this regard, promoting joint ventures can be a way to strengthen linkages between local and foreign enterprises, facilitating the transfer of knowledge and capabilities (UNCTAD, 2014a). FDI attraction measures can also be complemented by education policies, incentives for the accumulation of capabilities and innovation, and policies to strengthen local SMEs so as to enable them to supply TNCs with the intermediary goods and services they require for their operations. Most of these policies were implemented in first-tier but not in second-tier NIEs (UNCTAD, 1996).

4.4.3 Research and development subsidies

R&D subsidies in the form of preferential credits or tax reductions have been widely used, albeit generally in high- or middle-income countries. Such incentives are used to push firms to invest in R&D, especially in new and promising technological areas, but they are expensive instruments. For example, R&D incentives in the Republic of Korea cost almost half a percentage point of GDP in the second half of the 1980s (Guadagno, 2015a). It is expected that developing countries in particular would use these subsidies more in the future, given the recognized role of technological change in industrialization and the restricted policy space that these countries have today (see Section 5.2.3). As a matter of fact, R&D subsidies have been subject to relatively little WTO enforcement (Maskus, 2015).

It can be argued that if a technological area offers interesting profit opportunities, private firms and entrepreneurs are ready to invest in it, so R&D subsidies might crowd out private R&D. The literature has developed econometric techniques to estimate the additionality of R&D incentives, i.e. to determine if R&D incentives were used to cover investments that would have not taken place without the incentive. Most of the empirical studies on additionality of R&D incentives focus on developed economies (especially the United States and Europe) and find that R&D incentives have led to additional R&D investments, but have indeed crowded in, rather than crowded out, private investments.

Box 20

Examples of science, technology, and innovation policies in low-income economies

Low-income economies generally lack the physical and human capital to implement a full-fledged STI policy. Moreover, their poor infrastructure and underdeveloped financial systems hinder the development of modern industries (UNCTAD, 2007c). Yet, due to their role in structural and technological change, STI policies cannot only be a prerogative of high- and middle-income countries (UNCTAD, 2007c). As we will see in Section 5.2.1, skills and capabilities are also fundamental to successfully enter into and benefit from GVCs. Examples of successful experiments with STI policies can also be found in low- and lower-middle-income countries.

Ethiopia has been implementing an ambitious Industrial development plan since 2005. As part of this plan, several industries are targeted in various ways. In the leather industry, recognizing the bottlenecks that firms face in upgrading production to higher quality standards, the government established the Leather Industrial Development Institute. The institute provides animal vaccinations and extension services to improve workers’ skills, helping them to abandon traditional animal husbandry practices and adopt modern techniques that can preserve the quality of skins and hides (Lenhardt et al., 2015).

Cambodia has implemented several policy initiatives to attract and benefit from FDI inflows. Apart from streamlining and facilitating bureaucratic procedures, the government created SEZs and complementary institutions aimed at strengthening its national innovation system. Among these, the National Productivity Centre of Cambodia was established to improve productivity, especially of SMEs, by providing technical assistance and developing technologies to enhance efficiency and environmental responsibility. The Industrial Laboratory Centre of Cambodia is responsible for the testing and analysis of product quality, a particularly relevant issue when dealing with TNCs and GVCs. Finally, in 2008, the Technology Incubation Centre was established with support from the Asian Development Bank to drive innovation and new technology development (OECD, 2013a).

In other countries, bottom-up initiatives are emerging and producing innovations, also with a social value. For example, in Kenya, innovation hubs have been created where potential local entrepreneurs can benefit from mentoring and training programmes and use a reliable Internet connection and office equipment. These hubs have successfully produced a number of innovations especially in ICT, creative industries, and renewable energy (WIPO, 2015).

Source: Authors.
5 Current challenges to industrialization and industrial policy in developing countries

The relatively meagre results of policies based on the Washington Consensus, the effects of the 2007–2008 financial crisis, and the slowdown in growth rates of emerging economies after 2010 all contributed to bringing industrial policy back into the spotlight. Moreover, evidence that a middle-income trap is limiting opportunities for industrial upgrading and accelerating de-industrialization in several Latin American and Southeast Asian countries also suggested a need to return to industrial policy (Felipe, 2015; OECD, 2013b; Peres, 2009). In addition, there is a concern that the commodity price boom that affected resource-rich economies during the first decade of the 21st century (see Section 3.1.3.5 in Module 1) could accelerate deindustrialization, generating economic growth, but with little equity and employment.

This shows that developing countries still face a number of challenges to industrialize. These challenges are the result of internal and external conditions. The next sections focus on some of these issues, paying particular attention to those that are the most pressing for low- and middle-income countries.

5.1 Challenges from internal conditions

Economies face different constraints and opportunities resulting from differences in their human, institutional and economic development, policy priorities, location, history, and endowments. For this reason, industrial policy and national development strategies need to be context-specific. At the same time, countries share some common features that allow for some adaptation of successful policies. The following discussion highlights some of the country conditions that affect industrial policymaking in developing economies.

5.1.1 Level of economic, institutional, and human development

Constraints and opportunities for structural transformation are closely associated with the existing level of a country’s economic, institutional, and human development. This section reviews demand, supply, and structural factors that represent a challenge to policymaking in developing countries, and discusses the impact of institutional and human development on industrial policy implementation.

On the demand side, efforts to develop competitive industry are constrained by low income levels that limit the size of domestic markets and restrict demand to a limited range of usually low-quality products. Low incomes also result in low government revenues because the state is able to raise less through taxes, which subsequently leads to significant budget constraints that further limit aggregate demand. To overcome insufficient domestic demand, developing countries often turn to external markets. For the least advanced countries, external markets are difficult to reach because of poor infrastructure within the country and built out towards hubs outside the country, which in turn affects transportation costs, profitability of firms, and countries’ competitiveness. Research shows that such factors lead to segmentation of markets, preventing firms from taking advantage of economies of scale or investing in new products and new and better ways of production (Bigsten and Söderbom, 2006; Porter, 1990). Public procurement and policy instruments for export promotion are the key policy instruments to relax demand-side constraints.

On the supply side, developing countries generally lack skilled labour, basic infrastructure such as electricity and roads, and a science and technology infrastructure that allows for the use of modern technologies such as ICT. Domestic firms need these prerequisites to boost their capabilities and competitiveness. Often, only a few firms are technologically capable of competing on global markets, leading to the structural heterogeneities described in Module 1. Most of the policies discussed in Section 4 can be thought of as supply-side policies tackling supply-side constraints to production.

Structural heterogeneity can obstruct a policy-driven process of structural transformation because of weak linkages. Gains from growth in leading sectors must be linked to the rest of the economy; otherwise structural heterogeneity will be reinforced, slowing down industrialization and development. Developing countries also have to deal with a scale issue posed by the prevalence of small and mostly informal firms. Widespread informality has consequences for the formulation and implementation of industrial policy through several channels. Informality tends to be concentrated in small enterprises that cannot take advantage of economies of scale. In these firms, opportunities for learning are typically constrained by low capital intensity and the nature of the activities performed, generally requiring unskilled labour. Informality also makes it difficult for the government to reach en-
entrepreneurs and workers operating outside the spheres of state regulations and public incentive schemes. What is more, widespread informality decreases tax revenues, providing an additional rationale for government intervention. The scale of the structural transformation challenge is also evident in the sectoral distribution of the labour force. The statistics presented in Module 1 show that in developing countries a significant share of the labour force is employed in low-productivity sectors such as agriculture and non-tradable services.

With respect to the institutional development of the country, Sections 2.3 and 3.3 have already outlined the major institutional challenges that countries face in the design and implementation of an effective industrial policy. Strong institutions facilitate such policy and enable governments to use a wider set of industrial policy instruments, thanks to the higher capacity of the state and its bureaucracy. Institutions also influence distribution of power and rents in the society, affecting production structures, income levels, inequality, and so on. In the African case, for example, it has been argued that inequality and weak institutions created a system in which centralized power and informal loyalty networks often curbed industrial policy incentives in the wrong directions and made it difficult to correct failures. This contributed to leaving the private sector small and fragile and to deepening inequalities and ethnic conflicts (Altenburg, 2013; Altenburg and Melia, 2014). While these institutional factors have to some extent contributed to the design and implementation of industrial policies, it can be argued that institutions evolve and strengthen with development, as economic development can also be achieved in contexts characterized by weak institutions (Cervellati et al. 2008; Khan, 1996).

Low levels of human development can affect industrial policymaking, for example through malnutrition, poor health conditions of workers, or low education levels. As discussed in Section 4.2 in Module 1, economic growth per se might not be enough to foster social and human development. In some cases, economic growth is associated with large reductions in the number of poor, while in other cases the benefits of economic growth bypass the poor, or growth even leads to rising poverty levels. As a consequence, industrial policy has to be coupled with other economic policies in order to make sure that economic growth and structural transformation is not only concerned with shifting labour from agriculture to manufacturing, but also includes the poor and improves their living conditions and well-being (UNCTAD, 2011).

Altenburg (2011) provides several examples of how trade-offs between economic efficiency and equity can manifest themselves in industrial policymaking. For example, rapid liberalization in developing countries might achieve quick productivity gains, but might also make it difficult for producers to adapt to the new regime. Moreover, by channelling resources towards resource-based industries (i.e. where many developing countries have a comparative advantage) liberalization might implicitly favour particular social classes. This shows that industrial policy must not only be growth-oriented, but also concerned with poverty. To this end, Altenburg (2011) calls for “inclusive industrial policy”, which, in his view, should take into account the most vulnerable parts of society and ensure productive employment and decent wages (see also Altenburg and Lütkenhorst, 2015). Moreover, given the limited fiscal space of low-income countries, the opportunity costs of industrial policy against social services should also be carefully considered.

5.1.2 Location and endowment with natural resources

Some scholars argue that the location of countries, and essentially whether they are landlocked, determines their ability to grow and transform their production structures (Collier, 2007; Sachs et al., 2004). The location of an economy can affect a country’s ability to compete on global markets. Landlocked economies further away from major consumer markets or trading routes face higher transportation costs, which in turn lead to higher sale prices that hurt their competitiveness. To overcome these circumstances, countries can improve their relations with coastal neighbours through regional integration, or develop a strong tradable services industry that allows for circumventing logistic obstacles (Altenburg and Melia, 2014).

Critics of this view argue that it is not the location of the country, but rather the lack of investment in transportation that makes such countries perform poorly. Switzerland and Austria, but also Burkina Faso and Zimbabwe, are landlocked, but while the former set of countries has good river transport, the latter set does not (Chang, 2012). The case of Ethiopia is also illustrative in this respect. Despite being landlocked and having problematic transportation systems (both in terms of transport costs and time), Ethiopia is able to attract investment, mainly thanks to its relatively low labour costs and by encouraging prospects for future investment in transportation (Vrolijk, forthcoming).
Endowments with agricultural and mineral resources vary greatly across countries. Industrialization of resource-rich countries may be challenged by Dutch disease effects (see Sections 3.1.2 and 3.1.3.5 in Module 1). A boom in commodity prices during the first decade of the 21st century and the discovery of reserves of minerals and fuel in many developing countries allowed resource-rich countries to take advantage of favourable terms of trade. These recent developments have prompted some scholars to challenge the view that natural resources must necessarily represent a curse for developing countries (Torvik, 2009). Instead, they argue that with the right policy approach, commodity-based activities can be beneficial to countries that wish to industrialize. This literature identified production linkages between commodity industries and the rest of the economy that can sustain structural transformation and the rise of modern industries (see Box 3 in Module 1). These linkages and externalities would justify government intervention. Governments can intervene to strengthen production linkages and maximize the extent to which local firms can benefit from innovations and knowledge creation in the commodity industry. Country experiences demonstrate how difficult it can be to realize and maximize linkages. For example, in Mozambique, in order to complement the investment in the Mozal project (the aluminium smelter created at the end of the 1990s), the government attempted to establish linkages with local SMEs through the SME Empowerment Linkages Programme. However, the programme did not meet with great success, as knowledge spillovers were limited and local SMEs failed to accumulate sufficient capabilities (Ramdoo, 2015). In Botswana, the Mineral Beneficiation Policy, in coordination with the National Development Plan, is creating a comprehensive incentive system to attract firms in the diamond processing industry, and to develop a knowledgeable workforce employable in this skill-intensive industry. Incentives include tax benefits, reduction of red tape for expats employed in the industry, incentives for knowledge and skill transfer from foreign experts, and skill accumulation within local knowledge centres (Mbayi, 2011). Finally, it can be argued that infrastructure investments to facilitate transport of commodities can create positive externalities in other industries, regions, or neighbouring countries (Perkins and Robbins, 2011).

Apart from production linkages, fiscal linkages can also benefit the modern sector, fostering structural transformation. Fiscal linkages refer to the possibility for the government to use commodity revenues, for example in the form of tax and royalty revenues, to promote industrial development of non-commodity industries (Kaplinsky, 2011; UNCTAD, 2012a, 2012b). Industrial policy can leverage these fiscal linkages. Throughout history, governments have accumulated the financial resources required to be able to consistently implement an industrial policy in part through the appropriation of natural resource rents (UNCTAD, 2011a, 2012, 2014a, 2014b). Indeed, the realization that oil and gas will run out in the future has motivated many governments to begin to use these resource rents to underpin an industrial policy.

For example, in the mid-1960s, the discovery of significant reserves of oil and gas in the North Sea created a once-in-a-generation opportunity for the Norwegian and UK governments. In Norway, a major industrial policy programme was designed to capture the benefits of these reserves. The government established a SOE, Statoil, which quickly became a key player in the national industrial development effort thanks to its licensing agreements with international companies to transfer technologies to local companies and help them build their capabilities through local content agreements. Thanks to this strategy, Norway managed to develop a whole array of new industries, some world-leading technologies, key R&D institutions, and quality educational institutions. This policy helped sustain and drive forward its district of new innovative SMEs in the Stavanger region (Hatakenaka et al., 2006). Similarly, in Chile, the state-owned CODELCO (National Copper Corporation of Chile, or Corporación Nacional del Cobre), the world’s largest copper producer and one of the most profitable facilities in the world, channels part of its revenues into the state budget. These resources helped Chile finance many of its most important industrial development and social programmes such as Fundación Chile and CORFO (Chilean Economic Development Agency, or Corporación de Fomento de la Producción de Chile) (see also UNCTAD, 2006a).

The recent commodity price boom (see Section 3.1.3.5 in Module 1) has prompted governments to attempt to increase natural-resource rents and reduce incentives to investment, given the higher attractiveness of such investment in times of price booms. To this end, governments updated their regulatory and fiscal frameworks, increasing royalty and corporate tax rates, introducing new taxes, renegotiating contracts, and increasing state equity participation in extractive companies. In spite of these reforms, governments revenues did not grow as much as firms’ profits from extractive activities, showing that during the price boom, incentives may have remained too generous and created losses in public revenues.

For more examples, see the outcomes of the Making the Most of the Commodity Price Boom Project. Available at: http://dss.open.ac.uk/ research/projects/making-most-commodities.
Limited growth of government revenues might also be a sign of limited enforcement of the new regulatory and fiscal frameworks. Several countries decided not to implement their regulatory changes as a result of various types of pressures. Moreover, aggressive tax planning and accounting practices of TNCs, such as transfer mispricing practices, further reduced the efficacy of the reforms (UNCTAD, 2014b).

Finally, exchange rate policies are also particularly important in resource-rich economies. As structuralist economists have argued (see Sections 3.1.2 and 3.1.3.2 in Module 1), resource-abundant economies suffer from cyclical overvaluations of the exchange rate that penalize manufacturing. In these cases, a careful exchange rate policy is paramount to avoid the industrialization process getting halted or aborted (Ocampo, 2014).

5.2 Challenges from external conditions

Globalization and the emergence of GVCs, and the rise of the People’s Republic of China as an economic powerhouse, are some of the key developments that have contributed to a fast-changing global environment that poses challenges but also presents opportunities for developing countries. Strategies that a decade or two ago would have helped domestic firms become more competitive may fail to deliver the same results today. Moreover, some claim that the “policy space” of many developing countries is shrinking as their economies become more integrated through trade and financial linkages, facilitated by multilateral and regional agreements. This section surveys the most pressing global challenges to industrialization and industrial policy in developing countries.

5.2.1 Policies to profitably integrate into global value chains

As discussed in Sections 3.1.3.4 and 3.2.4 of Module 1, globalization has led to the fragmentation of global production and the rise of GVCs. In this new scenario, firms and countries integrate into international trade by specializing in tasks of the GVCs, rather than in goods and services. A huge literature on industrial policies for successfu
chain. When some players gain too much power in the chain, they might adopt strategies to capture higher shares of value added. For example, by creating trade-related constraints in the form of tariffs and other taxes, lead firms in downstream activities can reduce the profit margins of upstream firms. Alternatively, they might hamper technological upgrading and entry into downstream activities, for example by limiting knowledge and technology transfers or by imposing standards through trade and investment agreements (Milberg and Winkler, 2015; UNCTAD, 2014). These strategies are likely to cement the asymmetries in power and skills between developed and developing country firms. Governments in developing countries can help local firms negotiate contracts with foreign firms, for example by encouraging long-term contracts between them, supporting collective bargaining through producer associations, or providing training in bargaining and model contracts (Milberg et al., 2014; UNCTAD, 2011c, 2013b).

The potential for upgrading also depends on the characteristics of the private sector in the developing country. In particular, the quality and availability of local supply chains allow for lead firms to source intermediate inputs in the country and build linkages with local suppliers. Moreover, an entrepreneurial drive in the local economy can contribute to the emergence and strengthening of a dynamic private sector (Farfan, 2005). Industrial policy can foster these processes by supporting local SMEs, strengthening their linkages with TNCs and promoting entrepreneurship, as discussed in Sections 4.2.2 and 4.4.2.

The second industrial policy element – enabling participation in GVCs – refers to the importance of creating and maintaining an environment conducive to business, as discussed in Section 4.1. In the context of GVCs in particular, UNCTAD (2013b) points to the importance of trade facilitation, for example by streamlining port and customs procedures, and investment facilitation, including measures to streamline procedures related to entry and establishment of foreign-invested firms (e.g. registration, licensing, access to land, hiring, and taxes).

Building domestic productive capacity, the third element listed in Table 9, is paramount for industrialization. UNCTAD (2013b) identifies a number of policies in this area: (a) development of clustering and linkages to foster competitiveness via learning from competitors, suppliers, and customers; (b) support for science and technology to enhance product quality and productivity, and an effective intellectual property rights framework to give lead firms confidence in employing state-of-the-art technologies; (c) business development services such as business development service centres and capacity-building facilities; (d) promotion of entrepreneurship through incubators, training, or support with venture capital (see Section 4.2.3 for some examples); and (e) access to finance for SMEs to support development of domestic capacity and allow small firms to grow and reach minimum efficient scales of production (see Section 4.2.2). To this list, UNCTAD (2013) adds education policies, particularly technical vocational education and training.

The fourth policy element to cope with GVCs relates to environmental, social, and governance challenges. Working conditions in firms supplying to GVCs have been a source of concern, especially when FDI seeks low-cost labour in countries with relatively weak regulatory environments. Similarly, it has been argued that GVCs can also facilitate the relocation of polluting production processes to developing countries (Kozul-Wright and Fortunato, 2012). In this regard, government procurement policies can require compliance with international labour, human rights, and environmental standards. Additionally, EPZs can provide assistance with labour issues, informing firms about national labour regulations and providing support services. Similarly, EPZs can adopt environmental standards, for example in the form of environmental reporting requirements under which companies report their anticipated amounts of pollution and waste. Finally, in the area of good governance, it has been noted that part of the earnings of TNC affiliates is sometimes repatriated, and consequently the value created in the host country cannot be used by the government of the developing economy. Governments are increasingly strengthening regulatory frameworks in this area, imposing fines and penalties in cases of non-compliance.

The last policy area in Table 9 concerns the need for policy coherence, especially with regard to trade and investment policies. This has led many governments to merge investment promotion agencies and trade promotion organizations. These considerations, however, are context-specific, requiring case-by-case evaluations.
5.2.2 The rise of the People’s Republic of China

The fast growth of the People’s Republic of China is receiving a fair amount of attention in current debates on globalization and the catching-up processes of middle- and low-income economies. Scholars have begun to analyse the challenges and opportunities that China’s growth represents for industrial policy in the rest of the developing world (Fu et al., 2012; Kaplinsky and Messner, 2008; Lall and Albaladejo, 2004; Lall and Weiss, 2005; Naudé, 2010; Reiner and Staritz, 2013; UNCTAD, 1999, 2005b, 2010, 2011d; Weiss, 2013).

Opportunities largely depend on the extent to which growth in the People’s Republic of China (a) creates a market for exports from other developing countries (i.e., products produced by developing countries going to the Chinese market); (b) allows access to cheaper inputs; and (c) integrates other developing countries into GVCs. Several studies show that the rise of People’s Republic of China has led to higher exports from Latin America and Africa and to an increase in FDI to these regions, as noted in the following observations:

- A similar trend is found in the case of Africa, where between 1999 and 2004 exports to the People’s Republic of China grew by 48 per cent annually (Broadman, 2007).
- According to Ulltveit-Moe (2008), FDI from the People’s Republic of China and India to other developing countries has grown rapidly during the last decade, exceeding US$70 billion in 2006. However, as Jenkins et al. (2008) point out, most of the expanding FDI has been in mining, infrastructure, and energy, rather than in sectors such as manufacturing that arguably offer more opportunities for employment creation, spillovers, and learning.

While the growth of the People’s Republic of China may create opportunities for other developing countries, the evidence remains inconclusive with regard to the net benefits in the longer run. The rise of the People’s Republic of China, a country with large reserves of cheap labour but also human and technological capabilities, does not necessarily offer opportunities for industrialization for Latin American and sub-Saharan African countries. Researchers have found that:

- Data on patterns of trade show that developing countries tend to supply primary products and resource-based manufactures to the People’s Republic of China. For example, Kaplinsky and Morris (2008) find that the share of oil and gas in Africa’s exports expanded from 31 to 47 per cent during 1995–2005. Jenkins et al. (2008) show that more than two-thirds of Latin American exports to the People’s Republic of China consist of primary products such as soya, iron, ore, copper, pulp, fish, and leather.
- The pattern of trade is reversed when it comes to the type of goods imported from People’s Republic of China by developing countries. Notwithstanding variations across countries, Lall and Weiss (2005) note that more than 90 per cent of goods imported by Latin American countries are manufactured products and over 85 per cent are non-resource-based manufactures. A similar pattern is observed for African countries, where about half of total imports from the People’s Republic of China in 2005 were medium- and high-tech products (Kaplinsky and Morris, 2008).

Table 9

<table>
<thead>
<tr>
<th>Key elements</th>
<th>Principal policy actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embedding GVCs in development strategy</td>
<td>• Incorporating GVCs in industrial development policies</td>
</tr>
<tr>
<td>• Setting policy objectives along GVC development paths</td>
<td></td>
</tr>
<tr>
<td>Enabling participation in GVCs</td>
<td>• Creating and maintaining a conducive environment for trade and investment</td>
</tr>
<tr>
<td>• Putting in place the infrastructural prerequisites for GVC participation</td>
<td></td>
</tr>
<tr>
<td>Building domestic productive capacity</td>
<td>• Supporting enterprise development and enhancing the bargaining power of local firms</td>
</tr>
<tr>
<td>• Strengthening skills of the workforce</td>
<td></td>
</tr>
<tr>
<td>Providing a strong environmental, social and governance framework</td>
<td>• Minimizing risks associated with GVC participation through regulation, and public and private standards</td>
</tr>
<tr>
<td>• Supporting local enterprise in complying with international standards</td>
<td></td>
</tr>
<tr>
<td>Synergizing trade and investment policies and institutions</td>
<td>• Ensuring coherence between trade and investment policies</td>
</tr>
<tr>
<td>• Synergizing trade and investment promotion and facilitation</td>
<td></td>
</tr>
<tr>
<td>• Creating “regional industrial development compacts”</td>
<td></td>
</tr>
</tbody>
</table>

Note: GVCs: global value chains.
Can industrial policy provide effective means to overcome these challenges and, at the same time, help take advantage of the new opportunities? Does the rise of the People’s Republic of China leave room for export-led growth of other developing countries? Is a development strategy based on labour-intensive industries still feasible for low-income countries? Should industrial policy in developing countries shift attention from exports and production for high-income countries towards regional and South-South integration and domestic markets? These are some of the questions that arise from the findings of this literature.

The People’s Republic of China holds many advantages over other developing countries. It benefits from significant reserves of labour, which are likely to keep wages low for at least some years to come, and it is increasingly building up local capabilities to foster innovation. These advantages allow it, at least in the short term, to maintain a large presence in the markets for low- and medium-tech manufacturing activities. Increasingly, however, some of the economic activities in the People’s Republic of China are redirected towards other developing countries (e.g., Viet Nam or Ethiopia) where labour costs are relatively lower. This implies that as wages are rising, other developing countries may be able to capture production of some of the low-labour-cost manufactured goods. FDI from the People’s Republic of China can potentially lead to technology transfer and knowledge spillovers, but as we saw in Section 4.4.2, this is not an automatic process. In order to re-create the flying geese paradigm that allowed the Republic of Korea and Taiwan Province of China to benefit from Japanese FDI, governments in developing countries should facilitate the transfer of knowledge, technology and skills, and the accumulation of capabilities, for example by using the industrial policy instruments described in Section 4.4.

While it is undisputed that EOI strategies have produced extraordinary export growth and greatly contributed to structural and technological change in past industrial experiences, it is increasingly recognized that export-led growth cannot be an option for each country in the world. Export-led industrialization strategies must sooner or later reach their natural limits because not all countries can simultaneously pursue such strategies. This has been referred to as the “fallacy of composition argument”. According to the fallacy of composition argument, also referred to as the “adding-up problem”, what is viable for a small economy might not be viable for a group of economies, especially if they are large. In particular, according to this argument, large developing countries that try to simultaneously implement export-led strategies might encounter increasing protective resistance from other developing countries and might incur losses because prices of manufactures would tend to decrease (UNCTAD, 1999, 2002, 2005b; see also Mayer, 2003). This is what happened, for example, in the clothing industry, where many developing countries, and in particular the People’s Republic of China, adopted export promotion policies. The stronger Chinese participation in international trade significantly contributed to the decline in the unit values of its major exports (UNCTAD, 2005b). This phenomenon might have negative consequences for other developing countries entering those industries. However, while this is likely to reduce the scope for export-led growth and industrialization strategies based on labour-intensive manufacturing in developing countries, such manufacturing is no longer a comparative advantage or a development interest of the People’s Republic of China, which is trying to move to activities with higher skill and knowledge content (UNCTAD, 2005b).

In addition to the arguments presented above, the 2007–2008 financial crisis and the subsequent economic recession in many developed countries have proved that foreign demand is not only finite, but that it can also be rather limited. Competition for export markets based on cheap labour and low taxes is already leading developing countries to a “race to the bottom” that in the long run risks jeopardizing their chances to integrate into international trade in a sustainable manner. In light of this, large developing economies might choose to re-orient their industrial policies towards their (often expanding) domestic markets. This shift implies a change in demand patterns and characteristics, as firms would increasingly need to cater to low- and middle-income consumers in their countries instead of high-income consumers in developed countries. However, moving to domestic-
demand-oriented growth might be complex for developing countries that specialize in commodities and natural resources, or for countries that are integrated into international trade through the production of goods that domestic consumers do not consume (UNCTAD, 2013a, 2014b).

5.2.3 Policy space

It is often argued that the policy space that developing countries have today to pursue industrial policies is much narrower than that enjoyed by first-tier East Asian NIEs. The concept of policy space refers to “the freedom and ability of a government to identify and pursue the most appropriate mix of economic and social policies to achieve equitable and sustainable development that is best suited to its particular national context. It can be defined as the combination of de jure policy sovereignty, which is the formal authority of national policymakers over policy goals and instruments, and de facto national policy control, which involves the ability of national policymakers to set priorities, influence specific targets, and weigh possible tradeoffs” (UNCTAD, 2014b: 45). In other words, policy space defines the space for maneuver that policymakers have to pursue industrial policy. Over the past decades, the pursuit of economic liberalization has led to the conclusion of a wide range of multilateral, regional, and bilateral trade and investment agreements by developing countries. These agreements may to varying extents restrict the possibilities that developing countries have to support their domestic industries (Altenburg, 2011; Chang, 2002; Rodrik, 2004; UNCTAD, 1996, 2006). This section focuses on the changes in global governance that affect the policy space of developing countries. In particular, it analyses the constraints developing countries face due to changes in their policy space, and the options they still have in terms of flexibility in designing and pursuing their trade and investment policies. The discussion is conducted separately for multilateral, regional, and bilateral trade and investment agreements, and it draws particularly on UNCTAD (2006, 2014b), VRodrik (2004), and Lall (2004).

Multilateral trade agreements are rules set up to facilitate a more efficient flow of trade between countries. In other words, as stated in UNCTAD (2014b: 82), “The multilateral trade regime comprises a set of negotiated, binding and enforceable rules and commitments that are built on the core principles of reciprocity and non-discrimination, as reflected in the most-favoured-nation treatment and the commitment to national treatment (i.e. equal treatment for domestic and foreign goods and enterprises in domestic markets) requirements” (see Box 21 for definitions). There are, however, (temporary) exceptions to the above rules, such as special and differential treatment, that allow developing countries to retain or use some policy instruments whose use would otherwise be forbidden or restricted.

Box 21

Trade and investment agreements: Definitions of terms

- **Most-favoured-nation**: A product made in one member country cannot be treated less favourably than an “alike” product from another country.

- **National treatment principle**: Once foreign goods and enterprises have satisfied whatever border measures are applied, they cannot be treated less favourably (e.g. in terms of internal taxation) than alike or directly competitive domestically produced goods or enterprises.

- **Reciprocity**: Mutual or correspondent concessions of advantages or privileges in the commercial relations between two countries.

Source: Authors’ elaboration based on Rodrik (2004) and UNCTAD (2014b).

Some selective interventions that affect trade by protecting domestic markets or promoting exports are prohibited or restricted under multilateral trade agreements signed under the auspices of the WTO. Among them are restrictions to use export subsidies, prohibition of performance requirements such as domestic content requirements, and limits on the use of quantitative restrictions on imports (Rodrik, 2004). Several WTO agreements, which deserve special attention in this context, are discussed in detail below (UNCTAD, 2014b).

The **Agreement on Trade-related Investment Measures (TRIMs)** prohibits signatory countries from imposing discriminatory requirements on foreign investors such as local content, local employment, and trade-balancing requirements, foreign exchange balancing restrictions, and technology transfer requirements. Empirical
evidence demonstrated that in the past these instruments have been widely used to support structural transformation, allowing developing countries to derive greater benefits from FDI, increase linkages between foreign investors and local producers (see Section 4.4.2), and establish performance-based criteria such as export targets (see Section 2.3). There is, however, some flexibility in the agreement that allows countries to utilize some industrial policy instruments. For example, TRIMS does not prohibit countries from offering concessions to foreign investors (even if these may hurt domestic producers), as often occurs within EPZs and SEZs (see Section 4.4.2). Moreover, countries are allowed to impose sector-specific entry conditions on foreign investors, including industry-specific limitations, local content requirements for the procurement of services, and offset clauses in defence procurements (see Box 15).

The Agreement on Trade-related Aspects of Intellectual Property Rights (TRIPS) establishes the standards for granting and protecting intellectual property rights such as patents, copyrights, and trademarks. The TRIPS agreement protects R&D outcomes to allow entrepreneurs to appropriate the benefits that arise from their investments in R&D.94 The agreement restricts reverse engineering and other forms of imitative innovation, which in the current advanced economies, including East Asian economies, has proven to be crucial to gain knowledge and accumulate production and technological capabilities (Chang, 2002). Under the agreement, however, developing countries still enjoy some flexibility, mainly granted through two mechanisms: compulsory licensing and parallel imports. With compulsory licensing, authorities can license companies other than the patent owner to make, use, sell to the domestic market, or import a product under patent protection without the permission of the patent owner.95 With parallel imports, countries can import branded goods and sell them without the consent of the owner of the trademark. In addition to these two principles, adapting imported technologies to local conditions is allowed thanks to the granting of narrow patents for incremental innovations that build on more fundamental discoveries.96

The General Agreement on Trade in Services (GATS) extends the most-favoured-nation and national treatment principles (see Box 21 for definitions) to trade in a wide range of services, such as finance, tourism, education, and health. The agreement allows countries to make a list of activities that they commit to liberalize, as well as the mode and sequencing of “opening up” these activities to foreign investors. For this reason, the GATS is generally considered less binding than other agreements, although some observers insist that its reach is much broader than it appears, since it often covers a wide range of domestic laws and regulations (Chanda, 2002).

The Agreement on Subsidies and Countervailing Measures (ASCM) prohibits the use of subsidies contingent upon the use of domestic over imported goods (i.e. local content requirements) and export performance (i.e. export subsidies). The agreement thus restricts the capacity of developing countries to use these policies for the development of domestic firms. Other subsidies, such as production subsidies, are considered “actionable”, meaning that they are not prohibited, but can be challenged. As an exception to the agreement, countries that are classified as least developed, or WTO member countries with per capita incomes below US$1,000 (in constant 1990 US$) for three consecutive years, are excluded from this agreement. They can effectively use export subsidies to develop domestic industries, as long as they remain below that per capita income threshold (see Annex 7 of the ASCM).

Regional and bilateral trade and investment agreements. In addition to multilateral trade agreements, the conclusion of regional and bilateral trade agreements has further eroded the policy space available to developing countries by strengthening the overall level of enforcement, and by eliminating exceptions or demanding commitments not included in the multilateral agreements ratified under the WTO. Overall, measures included in regional trade agreements are often more stringent than provisions under the multilateral trade regime. This is why they are often referred to as “WTO-plus” (e.g. they stipulate additional tariff reductions), and/or they go beyond current multilateral agreements and are referred to as “WTO-extra” (e.g. they include additional provisions on environmental standards or rules of competition). Moreover, regional trade agreements tend to provide fewer exemptions compared to TRIPS and TRIMS. For example, in TRIPS-plus commitments, regional trade agreements often prohibit the use of parallel imports and allow compulsory licensing only in emergency situations. Furthermore, regional trade agreements have pushed for harmonization and mutual recognition of standards and technical regulations in order to remove technical barriers to trade and reduce transaction costs for foreign firms. In the context of promoting industrial development, this means that domestic firms would face greater competition at home (because entry in their domestic market is now easier for foreign firms). Alternatively, entrepreneurs would bear the costs of innovations, but not the profits potentially originating from them. In the absence of protection, due to the characteristics of knowledge described in Section 3.2.2, other entrepreneurs would be able to use that knowledge, replicate their innovations, re-sell them at lower prices and thus profit from these innovations.95

The firm that applies for the licence should have previously tried to directly negotiate a voluntary licence with the patent holder, unless there is a national emergency or extreme urgency, or for public non-commercial use, or in cases of anti-competitive practices.96

For more in-depth treatment, see also Correa (2013) and UNCTAD (2009c). For the impact of TRIPS on measures against climate change, see Fortunato et al. (2009).
investors) and obstacles to enter foreign markets (because they have to comply with stricter quality or environmental standards).

Regional trade agreements can also include an “investment chapter” that imposes rules on the functioning of capital markets and foreign investment, and that implicitly affects domestic policymaking. Alternatively, these provisions can be included in bilateral investment treaties. It has been argued that these investment agreements restrict the policy space of developing countries. For example, through the “investor-state dispute settlement” mechanism, countries accept the jurisdiction of foreign arbitration centres on issues that might affect the profitability of the foreign investment. Such mechanisms have allowed international investors to sue governments and obtain compensation for policies related to development, such as energy policies or macroeconomic policies (e.g. with regard to exchange rate management and restructuring of the banking system). In addition, these agreements often call for full liberalization of all sorts of capital flows and deregulation of financial services, impeding a selective approach to capital inflows (including FDI) and restricting the policy space to regulate domestic finance (Calcagno, 2015; UNCTAD, 2003, 2007, 2014b).

The key messages of this module include:

- Industrial policies have been a rather controversial topic, with authors in different traditions presenting very different views on what industrial policy is, what successful industrialized economies have done in terms of such policy, and what an optimal industrial policy should look like.
- Arguments in favour of industrial policy are mainly theoretical, i.e. they rely on economic concepts such as externalities and economies of scale, while arguments against industrial policy relate mainly to how industrial policies are implemented in practice.
- Industrial policies are not easy to implement, as they entail a number of potential risks and government failures.
- Despite these concerns, there are some industrial policy instruments that have proved successful in a number of industrialized and middle-income economies.
- Empirical evidence shows that successful industrial policies require a well-crafted mix of policy instruments and strong institutions with competent and efficient bureaucrats and officials.
- Successful industrial policy in developing economies also needs to take into account challenges from the international political and economic environment: GVCs, with their skills and knowledge requirements; the rise of the People’s Republic of China; and a reduced policy space resulting from multilateral, but especially regional and bilateral, trade and investment agreements that can condition industrial policy.

6 Conclusions

This module has examined the role of industrial policy in structural transformation. It has presented the main views on industrial policy, highlighting the divergences between different schools and interpretations. It has also discussed the main arguments in favour and against industrial policies, explaining how policies can be effectively designed and implemented in order to reduce potential risks of government failures. In this regard, the module described how governments have used specific industrial policy instruments to support successful catch-up by local industries. Finally, the module discussed some of the most important challenges to industrial policies in developing economies, differentiating between the internal and external factors.

97 See UNCTAD (2011c) on how to safeguard policy space and preserve countries’ industrial policy priorities when signing international investment agreements.
Exercises and questions for discussion

Question for discussion No. 1: What is industrial policy?

(a) Two groups of students (3-4 students each) debate the different definitions of industrial policy discussed in Section 2.1.

(b) Each student chooses an industrial policy instrument and discusses how it affects the economy and how it can be classified, following the classification proposed in Section 2.2.

(c) After reading Section 2.3 and Rodrik (2004, 2008), students should answer the following questions:

- What does the expression “carrots and sticks” refer to?
- What does “embedded autonomy” mean?
- What is the main advice in the literature with respect to industrial policy design and implementation, and management of state-business relations?

Question for discussion No. 2: Arguments in favour and against industrial policy

(a) Each student picks one of the strands of literature summarized in Section 3.1 and explains its interpretation of the East Asian experience, taking into account the cases of other developing regions. Based on the East Asian experience, which policy elements would you recommend, and why, to developing countries that seek to industrialize?

(b) After reading Sections 3.2 and 3.3 students should answer the following questions:

- What are market failures?
- What are economies of scale? Provide examples of how market failures arise in the presence of economies of scale and what the government can do to fix them.
- What are externalities? Provide examples of factors that give rise to externalities and explain how and why market failures occur and what the government can do.
- What are the factors that lead to imperfections in capital markets?
- Discuss the infant industry argument.
- What are the main arguments against industrial policy?

(c) Two groups of students (3-4 students each) debate the merits and relevance for developing countries of arguments in favour and against industrial policy.

(d) Each student chooses an industrial policy instrument and discusses how the use of that instrument can be justified and criticized, using the arguments reviewed in point (b).

Case study No. 1

Each student chooses one of the roles of the state outlined in Section 4 and identifies and discusses a policy experience of a country of the student’s choice in that particular area.

Question for discussion No. 3: Challenges to industrial policy in developing countries

(a) Two groups of students (3-4 students each) pick a country and discuss which of the internal conditions described in Section 5.1 are most relevant to the selected country and how they affect industrial policymaking.

(b) After reading Chapter IV of UNCTAD (2013b) and Farfan (2005) students should:

- Discuss and provide examples of the main forms of industrial upgrading in GVCs.
- Discuss the factors that impede or facilitate upgrading in GVCs in developing countries.
- Take one of the case studies on upgrading in commodity-dependent economies presented in Farfan (2005) and discuss the strategy and interventions used by policymakers to overcome commodity dependency. Do you think that the observed upgrading patterns could be replicated in other commodity-dependent economies? Why or why not?
Exercises and questions for discussion

(e) Each student chooses a country and discusses how its economy is affected by the rise of the People’s Republic of China as a global superpower. Which industrial policy can help the country benefit from this new international scenario?

(c) After reading Chapters V and VII of UNCTAD (2014b), students should answer the following questions:

- What types of selective interventions are prohibited by the WTO multilateral agreements? And what are the flexibilities that countries enjoy under these agreements?
- What is the meaning of “WTO-plus” and “WTO-extra” measures included in regional and bilateral trade and investment agreements?

Case study No. 2

Students should work, either on an individual basis or in a group, on a case study of industrial policymaking for a country of their choice. Specifically, they should:

(a) Assess the industrialization possibilities for the economy and identify the challenges and factors that may constrain policy interventions (e.g. in terms of the factors discussed in Sections 2.3, 3.3 and 5 and with particular attention to the level of state capacity).
(b) Analyse the industrial policies implemented in the recent past, distinguishing the different roles played by the state and discussing the elements of industrial policymaking that contributed to the success or failure of these policies.
(c) Identify priorities and complementary policies that are most relevant for the economy and justify their choices in terms of industrialization priorities, types of interventions, etc.
(d) Evaluate the relations between the selected country and the People’s Republic of China or other emerging economies. Examine the opportunities and challenges arising from these relations and the possible industrial policies that can maximize opportunities and address challenges.
(e) Propose policy interventions that can help the country insert itself into GVCs and upgrade its capabilities within them.
ANNEX

Industrial policy at the local level

Until relatively recently, the central government was portrayed as the driving force behind industrial policy design and implementation. However, as Bateman (2000) notes, a good number of industrial-policy-led successes have been undertaken—that is, designed, financed, implemented, and monitored—at the sub-national level, involving combinations of pro-active municipal and regional governments (albeit often achieved with a helping hand from central governments). The most important difference between central and local industrial policy measures lies in the scale of the enterprises supported. Rather than focusing on large enterprises, the emphasis of local industrial policy is mainly on promoting a thriving, technologically forward-looking, innovative, networked (both vertically and horizontally), and growth-oriented SME sector. This objective is important not only for employment, but also for innovation (see Section 4.2.2).

The examples of the then Federal Republic of Germany, Italy, and the People’s Republic of China illustrate this point. Networks and subcontracting in supply chains and collectively owned enterprises also proved to be important policy areas at the local level.

Regional support for small and medium-sized enterprises in the then Federal Republic of Germany

The then Federal Republic of Germany rose from almost total destruction in 1945 to become an industrial powerhouse and one of the world’s leading industrial export nations by the 2000s. The key to its transformation was an industrial policy approach built around a decentralized regional state-owned institutional support system that included banks, industrial R&D entities, technology development institutions, training institutions, and enterprise development entities that gave support both to create and later sustain industrial enterprise success (Meyer-Stamer and Waltering, 2000). The regional (Länder) government institutions were especially strong and motivated to promote the reconstruction and industrial development process, financing key enterprises and sectors based on careful technical studies and growth forecasts for the proposed market. The Länder and local governments were both instrumental in establishing and regulating a wide range of support structures that could promote SMEs through technology use, innovation, product and process upgrading, and prototype development. This dense local institutional structure was critical to the re-emergence of the Mittelstand (medium-sized enterprises), which in many important respects lay at the heart of then Federal Republic of Germany’s post-war economic performance. As in post-war Japan and Italy, therefore, the state of the then Federal Republic of Germany based its post-war development on pro-active regional and local state administrations that were able to develop capacity and generate the local resources to promote recovery and development from the bottom up.

Regional support for small and medium-sized enterprises in Italy

Italy is often held out as one of the countries that have shown considerable effort to promote the concept of local industrial policy. After 1945, the Italian government set out to support SME development through numerous financial support schemes. Of particular importance was the Artisan Fund dating from 1947, which provided 10-year loans at low interest rates for equipment purchases and the modernization of workshops. In just over 20 years (1953–1976), the Artisan Fund granted over 300,000 loans. However, the vast bulk of these loans (nearly 90 per cent) went to the northern regions of the country, where local and regional governments had established a very effective set of institutions capable of granting these loans on the basis of an industrial policy. The result was that nearly 36 per cent of all small-industry-based enterprises in the northern regions received one or more Artisan loans in this period. Between 1951 and 1971, the Artisan Fund extended nearly 172,000 loans, while the increase in the number of enterprises totaled 226,700—meaning that the number of loans amounted to nearly 75 per cent of total sectoral growth. A very large portion of the loans went towards capital equipment imported from abroad, including from the United States. This equipment served to upgrade the level of local technology in a short period of time (Weiss, 1988).

In 1950, the government also established a loan scheme to be administered through the Mediocredito Centrale that was specifically directed towards more innovative small manufacturing enterprises. As with the Artisan Fund, a very high proportion of these enterprises accessed these loans. But again, enterprises located in the northern regions were the main beneficiaries. The main reason for the huge disparity in loan applications and approvals between the north and south was not differing economic pre-conditions and business opportunities—many of the northern regions in 1945 were just as poor and devastated.
as the south – but the well-funded, comprehensive, and highly sophisticated regional and local state-led support institutions established by the regional, provincial, and municipal governments. This high level of support for the development of the local enterprise sector – crucially including significant financial support to facilitate access by key local enterprises to the latest state-of-the-art technologies – very much contributed to the rise of the “Third Italy” phenomenon of regional economic success achieved via spectacular SME growth and technological sophistication (Peluffo and Giachè, 1970).

As a final example, northern Italy’s servizi reali were local economic development agencies established by regional and local governments to support growth-oriented industrial SMEs and clusters of SMEs. With a total of 40 servizi reali by the mid-1990s, a third of Italy’s total, the northern regions were well placed to pro-actively promote local structural transformation and industrial upgrading. The Emilia-Romagna region alone supported 15 per cent of the Italian total of servizi reali, and it became known as the location for many of the world’s leading industrial SMEs and some of the largest and most prestigious technology-based companies (e.g. Ferrari). The most well-known of the servizi reali is ERVET (Emilia-Romagna Valorizzazione Economica Territorio, or Emilia-Romagna Regional Development Agency). Located in Bologna, the capital of Emilia-Romagna, ERVET has provided critical support to the region’s industrial clusters of innovative microenterprises and SMEs, including those operating within its famous industrial districts. With the government in Emilia-Romagna providing secure financial support for its operations, ERVET achieved its goal of building a flourishing innovation-driven, growth-oriented microenterprise and SME sector. By the 1970s, the manifest success of the Emilian model began to serve as the role model for other sub-national governments around the world wanting to establish a local industrial policy.

Regional support for small and medium-sized enterprises in the People’s Republic of China

The remarkable structural transformation of the People’s Republic of China achieved since the early 1980s was also the result of decentralization in the 1980s that opened the way for pro-active local governments and cities to introduce a range of industrial policies that combined to provide the impetus for the economic transformation of the Chinese economy. Blecher (1991) and Oi (1992) showed that the local governments were relatively pro-active and, among other things, free to raise their own funds to promote a local industrial policy. One of the motivating factors here was that seniority within the Chinese state bureaucracy depended on successful economic advancement of the locality, which in turn stimulated a form of inter-locality competition mediated by the central government in order to avoid over-capacity.

The first moves by local governments involved support for township and village enterprises (TVEs), which were local government-owned enterprises operating under hard budget constraints and pushed to use as much state-of-the-art technology as possible in order to expand. By 1996, there were some 7.6 million industrial TVEs in the People’s Republic of China (O’Connor, 1998), representing probably one of the most successful experiences of “municipal entrepreneurship” (Qian, 2000). Over time, external and internal pressure mounted to privatize the TVEs. The largest and most successful local governments then moved away from the TVE experiment to begin to establish whole industries from scratch. With the support of the national government, many city governments were able to build world-beating industrial sectors centered on shipbuilding, electronics, and engineering. Perhaps the best example of what came to be known as the “local developmental state” approach is with regard to automobiles. As Thun (2006) makes clear, political leaders were all keen to see the emergence of a domestic automobile industry, but it was at the local government level that real actions were taken. The city of Shanghai, in particular, was pro-active in developing a major automobile industry. City officials were involved in selecting the foreign partners, promoting the required cluster of SMEs with the capacity to subcontract items that required high technical specifications, and stimulating local R&D and innovation in order to rapidly improve quality.

Networks and subcontracting in supply chains

The importance of local industrial policy in structural transformation is even more pronounced if we consider networks and subcontracting in supply chains. From the mid-1800s onwards, scholars observed that large enterprises operate best when embedded within a dynamic SME sector able to directly provide quality intermediate inputs, skilled labour, technical knowledge, new technologies and innovations, and, indirectly, a range of other benefits (informal knowledge transfer, etc.). Alfred Marshall (1890) first identified this “agglomeration effect” in 19th century northern England, a region where large industries – textiles, textile machinery, machine tools, etc. – were continually upgraded thanks to constant interaction and cooperation between constituent large firms and SMEs operating in “industrial districts”. Importantly, it was
found that dynamic local governments and city administrations stood behind many of the crucial institutional innovations undertaken to establish and expand these industrial districts, such as in basic education and technical vocational education and training, technology transfer, new product and process generation, and public procurement. Agglomeration effects are a crucial factor in achieving productivity increases and structural transformation from the bottom up. Importantly, local industrial policies can link microenterprises, SMEs, and large enterprises in such a way that, among other things, knowledge and skills flows are spurred, technologies transferred both up and down the supply chain, and risks and rewards shared in an atmosphere of trust and cooperation based on a strong identification with the health of the local community. Several examples illustrate the important potential here.

For example, much success in the then Federal Republic of Germany was achieved in supporting the medium-sized enterprises (Mittelstand). But the wider, less-publicized success was in creating a highly efficient supply chain involving SMEs supplying highly specific inputs to major companies operating in the automobile, electronics, engineering, and other industries. Similarly, the industrial policy approach in northern Italy post-1945 was also very much developed around support for highly productive local enterprise networks and clusters that provided quality inputs to a new generation of Italian corporations. In addition, many of the supply chains supported were composed of solidarity/equity-promoting cooperative enterprises, a preference that helped build up important further reserves of trust, reciprocity, and cooperation in the local industrial community (Zamagni and Zamagni, 2010).

Alternatively, Japan established a local supply chain model that some scholars describe as the core factor behind Japan’s post-war industrial success and structural transformation (Friedman, 1988). The essence of the Japanese local supply chain model is the extent of cooperation established between the large company at the top of the supply chain and the industrial microenterprises and SMEs in the local community that supply it. In contrast with industrial development models in the United States and the United Kingdom, in Japan a leading company’s cooperation with suppliers is typically long term. A minimum profit is guaranteed to suppliers, risks are shared, and financial, technical, and other forms of support are made freely available to suppliers by the leading company (Nishiguchi, 1994). One obvious case in point is the automobile industry (Womack et al., 1990). For their part, local and regional governments establish a comprehensive support structure for local industrial microenterprises and SMEs that can resolve almost all of their main financial, training, technical, and technology transfer problems.

Collectively owned enterprises

Collectively owned enterprises are also positively associated with important episodes of local and regional structural transformation. Cooperative enterprises have a long history of innovating and promoting industrial development in areas in which conventional privately owned companies, or even the state, are unlikely to invest. One example concerns the Mondragon Cooperative Complex, a network of almost 120 worker cooperatives that was established in the small town of Mondragon in the Basque country of northern Spain. Mondragon houses a network of worker cooperative enterprises (Ellerman, 1982). Catalysed into life in the 1950s by a Roman Catholic priest who wanted to address the town’s high unemployment and poverty rates, the Mondragon cooperative complex began with one worker cooperative making simple industrial items for sale in the locality and wider region. It eventually grew to become one of the world’s leading innovative companies, while retaining almost all of its original cooperative philosophy and structures. Early on, the municipality realized that growth (and thus jobs and incomes in the community) was likely only if there was an industrial policy framework that could offer dedicated support to industry-based worker cooperatives. Accordingly, the Mondragon community began by putting together a wide range of industrial policy interventions including a financial support cooperative offering low-cost capital (the Working People’s Bank or Caja Laboral Popular), a high-quality technical advisory and business support body (the Entrepreneurial Division or Empresarial Division), an applied research and technology transfer centre (Ikerlan), and a local college (Escuela Politécnica Superior) for industrial R&D and vocational education and training. A particular strength of the Mondragon cooperative complex was the ease with which innovations and tacit knowledge were passed around the group, greatly contributing to upgrading technology in all of the Mondragon groups’ products and processes. Recognizing the great success of the Mondragon industrial cooperative complex, the Basque regional government began to construct an industrial policy framework along the same lines in the 1970s. After some setbacks, this framework has transformed the region from one of Spain’s poorest in the 1960s into one of its richest regions (Cooke and Morgan, 1998).
REFERENCES

Brezniitz D, and Ornston D (2013). The revolutionary power of peripheral agencies: Explaining radical policy innovation in Finland and Israel. Comparative Political Studies 46(10): 1219–245.

Industrial policy: a theoretical and practical framework to analyse and apply industrial policy

com/ComparativeExam/sites/default/files/Bibliography%20and%20Summaries/Onis%201991.pdf

publications/industrial-policies-in-a-changing-world-what-prospects-for-low-income-countries/

