Global Simulation Analysis of Industry-Level Trade Policy

Joseph Francois,
Tinbergen Institute and CEPR

H. Keith Hall,
U.S. Commerce Department

Version 3.0: 21 April 2003

Abstract: In this paper, we outline a modeling strategy for the partial equilibrium analysis of global trade policy changes at the industry level. The framework is scalable, employs national product differentiation, and allows for the simultaneous assessment of trade policy changes, at the industry level, on a global, regional, or national level. Results allow the assessment of importer and exporter effects related to tariff revenues, exporter (producer) surplus, and importer (consumer) surplus. With additional data, domestic production effects can also be fit into the framework.

Keywords: partial equilibrium model, trade policy modeling, simulation model, global markets

1. INTRODUCTION

In trade negotiations, there is a need for capacity within developing countries to assess the impact of tariff changes. This includes not only multilateral liberalization, but also regional and unilateral trade liberalization. In past GATT rounds, this has often involved the World Bank/UNCTAD sponsored SMART model. This is because while CGE models provide estimates of aggregate effects, national policy is made at the tariff line level.
Ultimately, trade ministries need a structured way to combine information on trade flows and trade policy for detailed product categories if they are to weigh the political forces that surround initiatives to liberalize trade.

In this paper, we outline a global simulation model (GSIM) for the analysis of global, regional, and unilateral trade policy changes. Our goal in developing the model is to provide a relatively simple, yet flexible framework for detailed analysis of trade policy in combination with the detailed tariff and trade flow data found in datasets like TRAINS and WITS. In this sense, we share goals with the developers of the GSIM predecessor, SMART. Where we depart from earlier applications in this area is in taking advantage of available greater computational power, and in stressing global market clearing conditions rather than import markets. By focusing on global markets, we hope to facilitate the analysis of the value of collective market access concessions for exporters, in addition to the import market effects stressed by existing tools in this area.

The approach we develop is partial equilibrium, being industry focused but global in scope. By definition, partial equilibrium models do not take into account many of the factors emphasized in our elegant general equilibrium trade theory. This implies practical limitations to the approach developed here. It also implies some useful advantages. Because we focus on a very limited set of factors, the approach followed allows for relatively rapid and transparent analysis of a wide range of commercial policy issues with a minimum of data and computational requirements. In our view, as long as the limitations of the partial equilibrium approach are kept in mind, useful insights can be drawn with regard to relatively complex, multi-country trade policy changes at the industry level. This includes interaction of multiple market access concessions across various trading partners, exporter gains, consumer surplus (importer) gains, and changes in tariff revenue.

The paper is organized as follows. Sections 2 and 3 develops the mathematical structure of the simulation model. This includes calibration of relevant own- and cross-price elasticities, as well as global market clearing conditions. The definition of revenue and welfare effects is also discussed. Section 4 is focused on mapping GSIM relationships to the SMART concepts of trade creation and diversion. Section 5 then discusses a simple 4 region implementation of the model in Excel. This serves to illustrate calculation of producer and consumer surplus changes, tariff revenue changes, and the overall strategy for solving the model. Section 6 discusses a stand-alone version of the model, with additional functionality but requiring subsidy and domestic production data. Two Excel files, GSIM4x4.XLS and GSIM25x25.XLS, are meant to be distributed with this paper.
2. BASIC RELATIONSHIPS

When modeling trade policy at an industry level, the potential exists for our model to quickly become unmanageable. For example, it is well known that the complexity of global general equilibrium models tends to increase geometrically as we add regions and sectors. A similar problem exists even when we focus on an individual sector. For example, if we are modeling trade policy for lefthanded horseshoe nails across 100 countries, there are 9,900 potential bilateral trade flows.

To avoid this problem, we reduce the solution set of the model to those global prices that clear global markets. Once we have a global set of equilibrium prices, we can then backsolve for national results. Within this context, we work with a log-linearized (percent-change) representation of import demand, combined with generic export-supply equations. (See Francois and Hall 1997). This reduced-form system, which only includes as many equations as there are exporters, is then solved for the set of world (exporter) prices.

A basic assumption is national product differentiation. As developed here, this means that imports are imperfect substitutes for each other. The elasticity of substitution is held to be equal and constant across products from different sources. The elasticity of demand in aggregate is also constant. Finally, import supply is also characterized by constant (supply) elasticities. Such an approach is consistent with the Armington (1969) approach to product differentiation at the national level (See Francois and Hall 1997, Roningen 1997), or with the Flam-Helpman (1987) model of firm-level differentiation (where firm-specific capital fixes varieties).

In this section we spell out the basic structure of the model. This includes the development of relevant own- and cross-price elasticities, and the inclusion of these terms in global supply and demand definitions and market clearing conditions.

2.1 Elasticities

A critical element of the model approach developed here is the underlying own- and cross-price demand elasticities. To arrive at these values, we start by assuming that, within each importing country r, import demand within product category i of goods from country r is a function of industry prices and total expenditure on the category:

1 This can result, in an Ethier-Krugman type model, if product varieties are fixed. It may also be a result of national differences in product characteristics (like French vs. Australian wine).
Table 1
Notation

<table>
<thead>
<tr>
<th>Indexes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>r,s</td>
<td>exporting regions</td>
</tr>
<tr>
<td>r,w</td>
<td>importing regions</td>
</tr>
<tr>
<td>i</td>
<td>industry designation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q_{i,v}$</td>
<td>The composite good in region r.</td>
</tr>
<tr>
<td>A_i</td>
<td>An efficiency term calibrated so that the price of Q, $P=1$.</td>
</tr>
<tr>
<td>$\varpi_{i,(i,v)}$</td>
<td>The CES expenditure weight term</td>
</tr>
<tr>
<td>E_s</td>
<td>The CES exponent term, where the substitution elasticity</td>
</tr>
<tr>
<td>$E_{e,i}$</td>
<td>elasticity of substitution</td>
</tr>
<tr>
<td>$E_{m,i,(i,v)}$</td>
<td>aggregate import demand elasticity</td>
</tr>
<tr>
<td>$E_{x,i,(i,v)}$</td>
<td>elasticity of export supply</td>
</tr>
<tr>
<td>$N_{i,(i,v),(r,v)}$</td>
<td>own price demand elasticity</td>
</tr>
<tr>
<td>$N_{i,(i,v),(r,s)}$</td>
<td>cross-price elasticity</td>
</tr>
<tr>
<td>$T_{i,(i,v)}$</td>
<td>The power of the tariff, $T=(1+t)$</td>
</tr>
<tr>
<td>$D_{i,(i,v)},r$</td>
<td>demand expenditure share (at internal prices)</td>
</tr>
<tr>
<td>$\frac{D_{i,(i,v)},r}{M_{i,(i,v)},r}$</td>
<td>$\frac{M_{i,(i,v)},r}{T_{i,(i,v),r}} / \bigwedge_i M_{i,(i,w),r}$</td>
</tr>
<tr>
<td>$\frac{D_{i,(i,v)},r}{M_{i,(i,v)},r}$</td>
<td>$\frac{M_{i,(i,v)},r}{T_{i,(i,v),r}} / \bigwedge_i M_{i,(i,w),r}$</td>
</tr>
</tbody>
</table>

Calibrated coefficients

<table>
<thead>
<tr>
<th>$N_{i,(i,v),(r,v)}$</th>
<th>own price demand elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_{i,(i,v),(r,s)}$</td>
<td>cross-price elasticity</td>
</tr>
<tr>
<td>$T_{i,(i,v)}$</td>
<td>The power of the tariff, $T=(1+t)$</td>
</tr>
<tr>
<td>$D_{i,(i,v)},r$</td>
<td>demand expenditure share (at internal prices)</td>
</tr>
<tr>
<td>$\frac{D_{i,(i,v)},r}{M_{i,(i,v)},r}$</td>
<td>$\frac{M_{i,(i,v)},r}{T_{i,(i,v),r}} / \bigwedge_i M_{i,(i,w),r}$</td>
</tr>
<tr>
<td>$\frac{D_{i,(i,v)},r}{M_{i,(i,v)},r}$</td>
<td>$\frac{M_{i,(i,v)},r}{T_{i,(i,v),r}} / \bigwedge_i M_{i,(i,w),r}$</td>
</tr>
</tbody>
</table>

Variables

<table>
<thead>
<tr>
<th>M</th>
<th>imports (quantity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>exports (quantity)</td>
</tr>
<tr>
<td>P</td>
<td>Composite domestic price</td>
</tr>
<tr>
<td>$P^{*}_{i,(i)}$</td>
<td>World price for exports from region r</td>
</tr>
<tr>
<td>$P_{i,(i,v)}$</td>
<td>Internal prices for goods from region r imported into region r</td>
</tr>
<tr>
<td>$T_{i,(i,v)}$</td>
<td>Import tariffs for goods from region r imported into region r.</td>
</tr>
</tbody>
</table>
Defining functions if we are to specify full market clearing.

\[M_{(i,v),r} = f(P_{(i,v),r} , P_{(i,v),sr} , y_{(i,v)}) \]

where \(y_{(i,v)} \) is total expenditure on imports of \(i \) in country \(v \), \(P_{(i,v),r} \) is the internal price for goods from region \(r \) within country \(v \), and \(P_{(i,v),sr} \) is the price of other varieties. In demand theory, this results from the assumption of weakly separability. (To avoid confusion on the part of the reader or the authors, Table 1 summarizes our notation).

By differentiating equation (1), applying the Slutsky decomposition of partial demand, and taking advantage of the zero homogeneity property of Hicksian demand, we can then derive the following (See Francois and Hall 1997):

\[N_{(i,v),(r,s)} = I((v),s) (E_m + E_s) \]

\[N_{(i,v),(r,s)} = I((v),s) E_m \bigcap_{s \neq r} I((v),s) E_s = I((v),s) E_m \bigcap (1 - I((v),s)) E_s \]

where \(I((v),s) \) is an expenditure share, and \(E_{m,s} \) is the composite demand elasticity in importing region \(r \).

2.2 National Demand and Supply Equations

Having defined own-price and cross-price elasticities, we next need to define demand for national product varieties. In addition, we will need national supply functions if we are to specify full market clearing.

Defining \(P_{(i,v),r}^* \) as the export price received by exporter \(r \) on world markets, and \(P_{(i,v),r} \) as the internal price for the same good, we can link the two prices as follows:

\[P_{(i,v),r} = (1 + t_{(i,v),r}) P_{(i,v),r}^* = T_{(i,v),r} P_{(i,v),r}^* \]
In equation (4), \(T = 1 + t \) is the power of the tariff (the proportional price markup achieved by the tariff \(t \)). We will define export supply to world markets as being a function of the world price \(P^* \).

\[
(5) \quad X_{i,t} = f(P^*_{i,t})
\]

Differentiating equations (1), (4) and (5) and manipulating the results, we can derive the following:

\[
(6) \quad \hat{P}_{(i,v),r} = \hat{P}_{i,t} \hat{P}^* + \hat{T}_{(i,v),r}
\]

\[
(7) \quad \hat{X}_{i,r} = E_{X_{(i,v)}} \hat{P}^*_{i,r}
\]

\[
(8) \quad \hat{M}_{(i,v),r} = N_{(i,v),(r,v),r} \hat{P}_{(i,v),r} + \sum_{s \neq r} N_{(i,v),(r,s),r} \hat{P}_{(i,v),s}
\]

where \(^\wedge\) denotes a proportional change, so that \(\hat{x} = \frac{dx}{x} \).

An important point to make here is that while we center the discussion in the text around production for export, one can also include domestic production for domestic consumption within our framework. In particular, we can index home market demand through equation (11), supplied as is other demand for production through equation (10). This means that, when data on domestic production are available, we can include domestic industry effects by modeling home market trade in addition to foreign trade, using a non-nested import and domestic demand structure.

\[\text{While we do not do so here, it would be straightforward to introduce export subsidies or taxes, in addition to import taxes. These would enter into equations (5) and (7). We could also introduce production subsidies through the same equations.}\]
2.3 Global Equilibrium Conditions

From the system of equations above, we need to make further substitutions to arrive at a workable model defined in terms of world prices. In particular we can substitute equations (6), (2), and (3) into (8), and sum over import markets. This yields equation (9).

\[
\hat{M}_{i,r} = \sum_v \hat{M}_{(i,v),r} = \sum_v \hat{N}_{(i,v),(r,s)} \hat{P}_{(i,v),r} \left[\hat{P}_{(i,v),r} + \sum_s \hat{N}_{(i,v),(r,s)} \hat{P}_{(i,v),s} \right]
\]

We can then set equation (9) equal to the modified version of equation (7). This yields our global market clearing condition for each export variety.

\[
\hat{M}_{i,r} = \hat{X}_{i,r} \quad \text{and} \quad E_{X(i,r)} \hat{P}_{(i,v),r} = \sum_v \hat{N}_{(i,v),(r,s)} \hat{P}_{(i,v),r} \left[\hat{P}_{(i,v),r} + \sum_s \hat{N}_{(i,v),(r,s)} \hat{P}_{(i,v),s} \right]
\]

Equation (10) is the core equation for the system implemented in the spreadsheet example in Section 4. For any set of \(R \) trading countries, we can use equation (10) to define \(S \leq R \) global market clearing conditions (where we have \(R \) exporters). If we also model domestic production, we will have exactly \(R=S \) market clearing conditions.

3. Welfare and Revenue Effects

In this section we work with the basic solution set of prices to calculate national welfare and revenue effects. Once we solve the system of equations defined by
(13) for world prices, as we do in our spreadsheet example, we can then use equations (7) to backsolve for export quantities, and equations (9) to solve for import quantities. We can also solve for the change in composite prices for consumers. From there, calculations of revenue effects are also straightforward, and they involve the application of trade values against tariffs. Price and quantity effects can be combined with partial equilibrium measures of the change in producer (i.e. exporter) surplus ΠPS and net consumer (i.e. importer net of tariff revenue changes) surplus $\Pi CS_{i,v}$, as a crude measure of welfare effects. (See Martin 1997).

Conceptually, our measure of producer surplus is shown in Figure 1 as the area of trapezoid $h_{n_{i,v}}$ and approximates the change in the area between the export supply curve and the price line. Formally, this is represented by equation (11) below.

$$
\Pi PS_{i,v} = R_{0_{i,v}}^0 \cdot \hat{P}_{r,v}^* \cdot \hat{X}_{i,v}^* - \left(R_{0_{i,v}}^0 \cdot \hat{P}_{r,v}^* \right) \cdot \frac{E_X_{i,v} \cdot \hat{P}_{r,v}^*}{2}.
$$

In equation (11), $R_{0_{i,v}}^0$ represents benchmark export revenues valued at world prices (which is identical to calibrated base quantities).

For consumer welfare, we focus on the implicit composite good, assuming an underlying CES aggregator. This composite good therefore takes the functional form

$$
Q_{i,v} = A_v \cdot \prod_{j=1}^r Q_{i,j,v}^* M_{i,v}^Q.
$$

Because we define the price of the composite good to be 1 in the benchmark equilibrium, the proportional change in the price of Q (with total quantity then equal to total consumer expenditure) will be:

$$
\hat{P} = \frac{dP}{P} = \prod_{j=1}^r Q_{i,j,v}^* \cdot \hat{P}_{i,j,v} = \prod_{j=1}^r Q_{i,j,v}^* \cdot \left(1 + \hat{P}_{i,j,v}^* \right) \frac{T_{i_{j,v}r}}{T_{i_{j,v}r}^0}.
$$
Where the reader is again referred for Table 1 for help on notation.

Equation (13) is the composite price equation applied in the spreadsheet example and in the actual model. It builds on the following relationship:

\[
\frac{dP_{(i,v),r}}{P_{(i,v),r}} = \frac{(P_{(i,v),r})_0}{(P_{(i,v),r})_0} - 1 = \frac{(P^*_{(i,v),r})_0 + dP^*_{(i,v),r}}{(P^*_{(i,v),r})_0} - 1
\]

The change in consumer surplus is also represented in Figure 1, as the area of trapezoid abed. It is defined as the change in the area between the demand curve for the composite good and the composite good price, as perceived by consumers. This is formalized in equation (15).

\[
\Box CS_{(i,v)} = \sum_j R^0_{(i,v),r} \cdot T_{(i,v),r} \left(\sqrt{2 E_{M,(i,v)}} \hat{P}_{(i,v)} \cdot \text{sign}(\hat{P}_{(i,v)}) \right)
\]

where \(\hat{P}_{(i,v)} = \sum_j \hat{P}_{(i,v)} + \hat{T}_{(i,v),r} \)

In equation (15), consumer surplus is measured with respect to the composite import demand curve, with \(P_{(i,v)} \) representing the price for composite imports, and \(R^0_{(i,v),r} \cdot T_{(i,v),r} \) representing initial expenditure (and identically quantity since the implicit calibrated base price is 1 for the composite) at internal prices. To make an approximation of welfare changes, we can combine the change in producer surplus, consumer surplus, and import tariff revenues.

4. **OWN- and CROSS- TRADE EFFECTS**

The SMART model employed measures called trade creation and trade diversion to quantify the effects of trade liberalization. Here, we briefly discuss the comparable measures. It turns out that, in the case of a single, small country, these are identical to the SMART equations for these values. Because these are
Figure 1
Producer and Consumer Surplus Measures

Export markers and producer surplus

$$\Delta PS_{(i,r)} = R_{(i,r)}^* \cdot \hat{P}_{i,r}^* + \frac{1}{2} \cdot R_{(i,r)}^0 \cdot \hat{P}_{i,r}^* \cdot \hat{X}_{i,r}$$

Import markers and consumer surplus

$$\Delta CS_{(i,v)} = \left(\sum_r R_{(i,v)}^0 \cdot T_{(i,v)}^r \right) \cdot \left(\frac{1}{2} E_{M,(i,v)} \hat{P}_{(i,v)}^2 - \hat{p}_{(i,v)} \right)$$
not actually the Vinerian trade creation and diversion measures, we instead will call them own- and cross-trade effects.

Within the system developed above, assume that world prices are fixed, so that price changes are simply driven by tariff changes. In this case, for a single country we have:

\[
\hat{M}_{(i,v),r} = N_{(i,v),r} \hat{P}_{(i,v),r} + \bigoplus_{s \neq r} N_{(i,v),r} \hat{P}_{(i,v),s}
\]

\[
= N_{(i,v),r} \hat{P}_{(i,v),r} + \bigoplus_{s \neq r} N_{(i,v),r} \hat{P}_{(i,v),s}
\]

Where we can further decompose equation (16) into an own-price and cross-price trade effect:

\[
TC_{(i,v),r} = M_{(i,v),r} \bigoplus [N_{(i,v),r} \hat{P}_{(i,v),r}]
\]

\[
TD_{(i,v),r} = M_{(i,v),r} \bigoplus N_{(i,v),r} \hat{P}_{(i,v),s}
\]

In equations (17) and (18), we have defined own-price (or “trade creation” in SMART) as trade generated by direct tariff reductions for the product concerned, and cross-price (or “trade diversion” in SMART) as trade changes generated by changes in tariffs on imports from third countries. These are really just a special case of the cross-price and own-price effects that make up import demand in equation (9) and equation (10).
5. IMPLEMENTATION – AN EXAMPLE

A 4x4 sample implementation of the model developed above is available as an Excel file. The data input section is illustrated in Figure 2, which highlights the basic data requirements. These include trade flows (valued at a common set of world prices), trade policy wedges, and relevant demand, supply, and substitution elasticities. The same types of data (with greater matrix dimensionality) are also required for larger applications. Note that while elasticities are symmetric for the present example, this is not necessary. On the basis of input data, other key parameters (as defined in equations (2) and (3) above) are calculated for cross-price and own-price effects. These are shown in Figure 3.

The Excel solver is then used to solve the excess demand conditions specified in equation (10) above for equilibrium prices in the counterfactual. This involves specifying one of the R excess demand functions for exports as the objective function, with the other excess demand functions then specified as constraints. The same approach can be specified for versions of the model with higher dimensionality. Such an extension is covered in Section 6. (For more on the use of the Excel solver for solving computational models, see Francois and Hall 1997, and Devarajan et al 1997). The core solution values, involving prices and excess demands, are shown in Figure 4.

On the basis of equilibrium price values, other changes in the system can be calculated as well. These include, of course, producer and consumer surplus measures (equations 14 and 15), changes in tariff revenues, trade quantities, and trade values. These are illustrated in Figures 5 and 6. The spreadsheets can be used to explore the actual calculation of values.

The experiment results, while based on synthetic data, still illustrate the types of effects captured in the model. We have modeled an experiment where two regions, the United States and European Union, introduce reciprocal tariff cuts (as might happen from a free trade agreement).

What are the effects of this tariff reduction? As we might expect, there is an increase in import demand on the parts of the EU and US, yielding an increase in prices for both exporters (7.83 percent for the U.S., and 4.55 percent for the EU). This in turn translates into gains in producer surplus: 45.6 for the U.S. and 37.7 for EU producers. For producers outside the region, the opposite happens. The preferential liberalization erodes demand for third country exports, and their prices fall. The results is a loss in producer surplus: -25.5 for Japan and -4.8 for the ROW.
On the consumer side, composite prices fall by roughly 9 percent for US and 8 percent for EU consumers. The net effects, involving the combination of producer surplus, consumer surplus, and tariff revenue changes, is also summarized in the spreadsheet. (See Figure 6). The net effect involves gains for the EU and U.S., and losses for Japan and ROW. In the case of both Japan and ROW, producer losses correspond to a terms-of-trade deterioration.

6. **AN EXPANDED STAND-ALONE VERSION**

The 4x4 version implemented above is designed to work given the limited data environment (in terms of domestic production data) in which large-scale detailed tariff analysis is often undertaken. This 4x4 example is implemented in WITS. There is also a stand-alone version of the model, designed to accommodate a mode detailed set of policy and production data. This is the GSIM25x25.XLS spreadsheet implementation.

The GSIM25x25 model has the following addition features (not implemented in WITS itself, however).

- Domestic production can be included, where data are available.
- Domestic production subsidies can be included, where data are available.
- Bilateral export subsidies can be included, where data are available.
- Up to 25 countries/regional partners can be specified.

This additional functionality makes necessary the following changes to the basic theory:

\[
\hat{X}_{i,r} = E_{X(i,r)} \left(\hat{P}_{i,r}^* + \hat{G}_{i,r} \right)
\]

\[
\hat{P}_{(i,v),r} = \left(1 + \hat{P}_{i,r}^* \right) \cdot \left(\frac{(T_{(i,v),r})_1}{(T_{(i,v),r})_0} \right) \cdot \left(\frac{(S_{(i,v),r})_0}{(S_{(i,v),r})_1} \right) \cdot 1
\]
where

\[
(S_{(i,v),r})_j \quad \text{The subsidy paid for export of product } i \text{ from region } r \text{ to region } v \text{ in time period } j=0,1 \text{ and where } S=1+s \text{ and } s \text{ is the ad valorem subsidy rate (as a share of world price), so that an exporter receives a subsidy of } s \text{ for each unit of revenue earned directly by exports.}
\]

\[
G_{i,r} \quad \text{A production subsidy in region } r.
\]

While the model is still solved for world prices, produced and consumer prices will vary from world prices by the combined effects of import tariffs, production subsidies, and export subsidies. In addition, while tariff revenue is netted against consumer surplus to obtain net consumption benefits, producer and export subsidies must also be netted against producer surplus to obtain production benefits.

The GSIM25x25 implementation also allows for own-trade (i.e. domestic absorption), such that the import demand elasticity is replaced by the aggregate demand elasticity (see Francois and Hall 1997). All the remaining algebra goes through as specified, with the modified assumption that the CES aggregation function in equation (12) is now an explicit non-nested CES aggregator defined over imports and the domestic good. ³

Because of the differences outlined above, the GSIM25x25 spreadsheet involves a greater set of data requirements. These are outlined in steps on the spreadsheet itself, as shown in Figure 7. The reported results are somewhat different as well, including differences in consumer, market, and producer prices, as well as changes in domestic production and the contribution of change in subsidy payments to total welfare. This is illustrated in Figure 8.

³ (Note that the 25x25 implementation uses a slightly different approximation for equation (6), using the internal price change reported in equation (12), so that there may be slight differences in approximate results under the two spreadsheets.)
REFERENCES

Figure 2
Excel 4x4 implementation of GSIM -- model inputs

INPUTS

<table>
<thead>
<tr>
<th></th>
<th>USA</th>
<th>JAPAN</th>
<th>EU</th>
<th>ROW</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>0</td>
<td>50</td>
<td>200</td>
<td>300</td>
<td>550</td>
</tr>
<tr>
<td>JAPAN</td>
<td>500</td>
<td>0</td>
<td>150</td>
<td>200</td>
<td>850</td>
</tr>
<tr>
<td>EU</td>
<td>300</td>
<td>100</td>
<td>200</td>
<td>200</td>
<td>800</td>
</tr>
<tr>
<td>ROW</td>
<td>50</td>
<td>100</td>
<td>110</td>
<td>20</td>
<td>280</td>
</tr>
<tr>
<td>Totals</td>
<td>850</td>
<td>250</td>
<td>660</td>
<td>720</td>
<td></td>
</tr>
</tbody>
</table>

initial import tariffs

<table>
<thead>
<tr>
<th></th>
<th>USA</th>
<th>JAPAN</th>
<th>EU</th>
<th>ROW</th>
<th>USA</th>
<th>JAPAN</th>
<th>EU</th>
<th>ROW</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>1</td>
<td>1.21</td>
<td>1.41</td>
<td>1.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JAPAN</td>
<td>1.37</td>
<td>1</td>
<td>1.31</td>
<td>1.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EU</td>
<td>1.32</td>
<td>1.36</td>
<td>1</td>
<td>1.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROW</td>
<td>1.57</td>
<td>1.41</td>
<td>1.25</td>
<td>1.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

final import tariffs

<table>
<thead>
<tr>
<th></th>
<th>USA</th>
<th>JAPAN</th>
<th>EU</th>
<th>ROW</th>
<th>USA</th>
<th>JAPAN</th>
<th>EU</th>
<th>ROW</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>1</td>
<td>1.21</td>
<td>1.41</td>
<td>1.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JAPAN</td>
<td>1.37</td>
<td>1</td>
<td>1.31</td>
<td>1.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EU</td>
<td>1</td>
<td>1.36</td>
<td>1</td>
<td>1.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROW</td>
<td>1.57</td>
<td>1.41</td>
<td>1.25</td>
<td>1.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elasticities:

- **Em**: Import Demand
 - USA: -1.25
 - JAPAN: -1.25
 - EU: -1.25
 - ROW: -1.25

- **Ex**: Export Supply
 - USA: 1.5
 - JAPAN: 1.5
 - EU: 1.5
 - ROW: 1.5

- **Es**: Substitution
 - USA: 5
 - JAPAN: 5
 - EU: 5
 - ROW: 5
Figure 3
Excel 4x4 implementation of GSIM -- Calibrated values

Calibrated values

<table>
<thead>
<tr>
<th></th>
<th>USA</th>
<th>JAPAN</th>
<th>EU</th>
<th>ROW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notation definitions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q_i)</td>
<td><code>0.0000</code></td>
<td><code>0.1792</code></td>
<td><code>0.3456</code></td>
<td><code>0.4202</code></td>
</tr>
<tr>
<td>(q_r)</td>
<td><code>0.5907</code></td>
<td><code>0.0000</code></td>
<td><code>0.2454</code></td>
<td><code>0.2824</code></td>
</tr>
<tr>
<td>(q_{ij})</td>
<td><code>0.3415</code></td>
<td><code>0.4059</code></td>
<td><code>0.2451</code></td>
<td><code>0.2709</code></td>
</tr>
<tr>
<td>SUM</td>
<td><code>0.0677</code></td>
<td><code>0.4178</code></td>
<td><code>0.1685</code></td>
<td><code>0.0264</code></td>
</tr>
</tbody>
</table>

Figure 4
Excel 4x4 implementation of GSIM – Core solution values

MODEL SOLUTIONS

<table>
<thead>
<tr>
<th></th>
<th>USA</th>
<th>JAPAN</th>
<th>EU</th>
<th>ROW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notation definitions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_i)</td>
<td><code>0.0000</code></td>
<td><code>0.0909</code></td>
<td><code>0.3636</code></td>
<td><code>0.5455</code></td>
</tr>
<tr>
<td>(f_r)</td>
<td><code>0.5882</code></td>
<td><code>0.0000</code></td>
<td><code>0.1766</code></td>
<td><code>0.2353</code></td>
</tr>
<tr>
<td>(f_{ij})</td>
<td><code>0.3750</code></td>
<td><code>0.1500</code></td>
<td><code>0.2500</code></td>
<td><code>0.2500</code></td>
</tr>
<tr>
<td>SUM</td>
<td><code>0.1786</code></td>
<td><code>0.3571</code></td>
<td><code>0.3929</code></td>
<td><code>0.0714</code></td>
</tr>
</tbody>
</table>

Equation (3) Own price elasticities

<table>
<thead>
<tr>
<th></th>
<th>USA</th>
<th>JAPAN</th>
<th>EU</th>
<th>ROW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equation (10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(N_{ij})</td>
<td><code>-5.0000</code></td>
<td><code>-4.3278</code></td>
<td><code>-3.7040</code></td>
<td><code>-3.4242</code></td>
</tr>
<tr>
<td>(N_{jk})</td>
<td><code>-2.7846</code></td>
<td><code>-5.0000</code></td>
<td><code>-4.0970</code></td>
<td><code>-3.9409</code></td>
</tr>
<tr>
<td>(N_{ki})</td>
<td><code>-3.7193</code></td>
<td><code>-3.4889</code></td>
<td><code>-4.0809</code></td>
<td><code>-3.9839</code></td>
</tr>
<tr>
<td>(N_{lj})</td>
<td><code>-4.7461</code></td>
<td><code>-4.3433</code></td>
<td><code>-4.3681</code></td>
<td><code>-4.9010</code></td>
</tr>
</tbody>
</table>

Equation (2) Cross price elasticities

<table>
<thead>
<tr>
<th></th>
<th>USA</th>
<th>JAPAN</th>
<th>EU</th>
<th>ROW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equation (10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(N_{ij})</td>
<td><code>0.0000</code></td>
<td><code>0.6722</code></td>
<td><code>1.2960</code></td>
<td><code>1.5758</code></td>
</tr>
<tr>
<td>(N_{jk})</td>
<td><code>2.2154</code></td>
<td><code>0.0000</code></td>
<td><code>0.9030</code></td>
<td><code>1.0591</code></td>
</tr>
<tr>
<td>(N_{ki})</td>
<td><code>1.2807</code></td>
<td><code>1.5511</code></td>
<td><code>0.9191</code></td>
<td><code>1.0161</code></td>
</tr>
<tr>
<td>(N_{lj})</td>
<td><code>0.2539</code></td>
<td><code>1.5667</code></td>
<td><code>0.6319</code></td>
<td><code>0.0990</code></td>
</tr>
</tbody>
</table>

MARKET CLEARING CONDITIONS
Relative price changes

<table>
<thead>
<tr>
<th></th>
<th>USA</th>
<th>JAPAN</th>
<th>EU</th>
<th>ROW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equation (10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta p_i)</td>
<td><code>0.0000</code></td>
<td><code>0.0792</code></td>
<td><code>0.1188</code></td>
<td><code>0.1188</code></td>
</tr>
<tr>
<td>(\Delta q_i)</td>
<td><code>-0.0316</code></td>
<td><code>-0.0474</code></td>
<td><code>-0.0474</code></td>
<td><code>-0.0474</code></td>
</tr>
<tr>
<td>(\Delta q_{ij})</td>
<td><code>0.0488</code></td>
<td><code>0.9721</code></td>
<td><code>0.0161</code></td>
<td><code>0.0161</code></td>
</tr>
<tr>
<td>SUM</td>
<td><code>-0.0184</code></td>
<td><code>-0.0276</code></td>
<td><code>-0.0276</code></td>
<td><code>-0.0276</code></td>
</tr>
</tbody>
</table>
Figure 5
Excel 4x4 implementation of GSIM – Trade Effects

<table>
<thead>
<tr>
<th>origin</th>
<th>destination</th>
<th>USA</th>
<th>JAPAN</th>
<th>EU</th>
<th>ROW</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>0.0</td>
<td>-12.2</td>
<td>185.9</td>
<td>-59.7</td>
<td>114.0</td>
<td></td>
</tr>
<tr>
<td>JAPAN</td>
<td>-96.0</td>
<td>0.0</td>
<td>-21.0</td>
<td>51.1</td>
<td>-65.9</td>
<td></td>
</tr>
<tr>
<td>EU</td>
<td>218.2</td>
<td>-10.2</td>
<td>-97.4</td>
<td>-11.8</td>
<td>98.9</td>
<td></td>
</tr>
<tr>
<td>ROW</td>
<td>-12.3</td>
<td>16.7</td>
<td>-21.3</td>
<td>4.2</td>
<td>-12.7</td>
<td></td>
</tr>
<tr>
<td>Import Total</td>
<td>110.0</td>
<td>-5.7</td>
<td>46.2</td>
<td>-16.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXPORT CHANGES (world prices)
Figure 6
Excel 4x4 implementation of GSIM – Welfare Effects

<table>
<thead>
<tr>
<th>Country</th>
<th>A (Producer surplus)</th>
<th>B (Consumer surplus)</th>
<th>C (Tariff revenue)</th>
<th>D = A + B (Net welfare effect)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>46.1</td>
<td>110.6</td>
<td>-138.5</td>
<td>18.2</td>
</tr>
<tr>
<td>JAPAN</td>
<td>-26.2</td>
<td>-8.9</td>
<td>0.6</td>
<td>-34.5</td>
</tr>
<tr>
<td>EU</td>
<td>39.8</td>
<td>68.6</td>
<td>-93.8</td>
<td>14.5</td>
</tr>
<tr>
<td>ROW</td>
<td>-5.1</td>
<td>-32.9</td>
<td>-2.9</td>
<td>-40.8</td>
</tr>
</tbody>
</table>

The diagram shows the distribution of welfare effects for different countries, including tariff revenue, consumer surplus, and producer surplus.
Figure 7
The GSI25x25 Spreadsheet

INPUTS

STEP 1
Enter Region Names

<table>
<thead>
<tr>
<th>Region1</th>
<th>USA</th>
<th>Region2</th>
<th>JAPAN</th>
<th>Region3</th>
<th>ROW</th>
<th>Region4</th>
<th>EU</th>
<th>Region5</th>
<th>Reg5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STEP 2
Load the initial bilateral trade matrix, at world prices.

<table>
<thead>
<tr>
<th>destination</th>
<th>USA</th>
<th>JAPAN</th>
<th>EU</th>
<th>ROW</th>
<th>Reg5</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>750</td>
<td>50</td>
<td>200</td>
<td>300</td>
<td>0</td>
</tr>
<tr>
<td>JAPAN</td>
<td>50</td>
<td>1000</td>
<td>200</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>EU</td>
<td>750</td>
<td>50</td>
<td>100</td>
<td>200</td>
<td>0</td>
</tr>
<tr>
<td>ROW</td>
<td>50</td>
<td>1000</td>
<td>200</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>Reg5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

STEP 3
Load the initial bilateral import tariffs in ad valorem form.

<table>
<thead>
<tr>
<th>destination</th>
<th>USA</th>
<th>JAPAN</th>
<th>EU</th>
<th>ROW</th>
<th>Reg5</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>1.21</td>
<td>1.41</td>
<td>1.22</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>JAPAN</td>
<td>1.37</td>
<td>1.31</td>
<td>1.23</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>EU</td>
<td>1.54</td>
<td>1.41</td>
<td>1.29</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ROW</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Reg5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: For less than 25 regions, leave the rest of the labels and table values empty.

Note: Domestic absorption is included as trade with self.

Note: Tariffs are entered as $T = 1 + t$, where t is the rate of the tariff markup relative to world price.
Summary of Effects

![Table showing the Summary of Effects](image)

Table: Summary of Effects

<table>
<thead>
<tr>
<th>Welfare</th>
<th>Producer Surplus</th>
<th>Consumer Surplus</th>
<th>Tariff Revenue</th>
<th>Change in Subsidy Payments</th>
<th>Total Welfare Effect</th>
<th>Change in Overall Consumer Prices</th>
<th>Change in Output Price for Home Good</th>
<th>Change in Market Price for Home Good</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-311.2</td>
<td>611.1</td>
<td>-58.2</td>
<td>185.3</td>
<td>241.1</td>
<td>4.17%</td>
<td>91.5%</td>
<td>34.31%</td>
</tr>
<tr>
<td>B</td>
<td>72.1</td>
<td>204.9</td>
<td>47.8</td>
<td>6.9</td>
<td>247.7</td>
<td>22.0%</td>
<td>9.3%</td>
<td>9.9%</td>
</tr>
<tr>
<td>C</td>
<td>23.5</td>
<td>26.5</td>
<td>46.5</td>
<td>9.5</td>
<td>266.7</td>
<td>24.9%</td>
<td>14.9%</td>
<td>7.8%</td>
</tr>
<tr>
<td>D</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>E</td>
<td>A + B = C + D</td>
<td>22.1</td>
<td>74.0</td>
<td>51.8</td>
<td>138.0</td>
<td>5.0%</td>
<td>7.5%</td>
<td>5.0%</td>
</tr>
</tbody>
</table>

Producer Surplus:
- USA: -331.2
- Japan: 62.7
- EU: 75.1
- ROW: 29.4
- Reg5: 0.0
- Reg6: 0.0
- Reg7: 50.2
- Reg8: -27.8
- Reg9: 41.6
- Reg10: -5.5

Consumer Surplus:
- USA: -81.7
- Japan: -60.2
- EU: -204.4
- ROW: -248.5
- Reg5: 0.0
- Reg6: 0.0
- Reg7: 111.5
- Reg8: -9.3
- Reg9: 67.3
- Reg10: -35.3

Tariff Revenue:
- USA: -54.3
- Japan: 0.5
- EU: -87.9
- ROW: -40.6
- Reg5: 0.0
- Reg6: 0.0
- Reg7: -140.6
- Reg8: 0.7
- Reg9: -95.1
- Reg10: -3.3

Change in Subsidy Payments:
- USA: 708.3
- Japan: 0.0
- EU: 0.0
- ROW: 0.0
- Reg5: 0.0
- Reg6: 0.0
- Reg7: 0.0
- Reg8: 0.0
- Reg9: 0.0
- Reg10: 0.0

Total Welfare Effect:
- USA: 241.1
- Japan: 247.7
- EU: 266.7
- ROW: 138.0
- Reg5: 0.0
- Reg6: 0.0
- Reg7: 138.0
- Reg8: 0.0
- Reg9: 0.0
- Reg10: 0.0

Change in Overall Consumer Prices:
- USA: 4.17%
- Japan: 22.0%
- EU: 24.9%
- ROW: 5.0%
- Reg5: 0.0%
- Reg6: 0.0%
- Reg7: 22.0%
- Reg8: 0.0%
- Reg9: 0.0%
- Reg10: 0.0%

Change in Output Price for Home Good:
- USA: 91.5%
- Japan: 9.3%
- EU: 14.9%
- ROW: 7.5%
- Reg5: 0.0%
- Reg6: 0.0%
- Reg7: 5.0%
- Reg8: 0.0%
- Reg9: 0.0%
- Reg10: 0.0%

Change in Market Price for Home Good:
- USA: 34.31%
- Japan: 9.9%
- EU: 7.8%
- ROW: 5.0%
- Reg5: 0.0%
- Reg6: 0.0%
- Reg7: 5.0%
- Reg8: 0.0%
- Reg9: 0.0%
- Reg10: 0.0%